Electronic Supporting Information

Tetraaryl Pyrenes: Photophysical Properties, Computational Studies,

Crystal Structures, and Application in OLEDs

Tarek H. El-Assaad,¹ Manuel Auer,² Raul Castañeda,³ Kassem M. Hallal,¹ Fadi M. Jradi,¹

Lorenzo Mosca,⁴ Rony S. Khnayzer,⁵ Digambara Patra,¹ Tatiana V. Timofeeva,³ Jean-Luc

Brédas,⁶ Emil J. W. List-Kratochvil,^{2,7} Brigitte Wex,^{5,*} and Bilal R. Kaafarani^{1,*}

¹Department of Chemistry, American University of Beirut, Beirut 1107-2020, Lebanon ²NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler-Straße 32, A-8160 Weiz,

Austria

³Department of Biology & Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA

⁴Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA

⁵Department of Natural Sciences, Lebanese American University, Byblos, Lebanon

⁶Solar & Photovoltaics Engineering Research Center, Physical Science and Engineering

Division, King Abdullah University of Science & Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

⁷Institute of Solid State Physics, Graz University of Technology, A-8010 Graz, Austria

Table of Contents

Figure S1. Crystal packing of compounds a) 1 , b) 2 , c) 4 , d) 5 , e) 7 , and f) 9	S2
Figures S2-S17. ¹ H and ¹³ C NMR spectra for compounds 1-5,7-9	S5
Figure S18-S25. Normalized absorption, excitation and emission	
spectrum of pyrene, 1,3,6,8-tetraphenylpyrene (TPP), 1-4,6-8 in chloroform	. S13
Figure S27. Fluorescence lifetime profile at various possible emission wavelengths	keep the
excitation wavelength constant in chloroform for compound 8	S18
Figure S28. UV-visible absorption (left) and fluorescence (right) spectra of 1-4,5-8 in di	fferent
solvent environment	S19
Figure S35. Plot of Stokes shift vs Δf for compounds 1-9	S22
Figure S36. Plot of Stokes shift vs $E_T(30)$ for compounds 1-9	S22

* To whom correspondence should be addressed. Email: brigitte.wex@lau.edu.lb (B.W.);

bilal.kaafarani@aub.edu.lb (B.R.K.)

Figure S37. Time-resolved fluorescence decay profile for various compounds 1-4 in different solvents..... S22 Figure S38. Time-resolved fluorescence decay profile for various compounds **5-9** in different solvents..... S24 Tables S1-S6. Absorption, Emission maxima and Stokes shift of 1-9 in various solvents. S27 **Table S7.** Frontier molecular orbitals depiction involved in the $S_0 \rightarrow S_1$ ($S_0 \rightarrow S_2$ for pyrene) vertical transitions of pyrene, TPP and 1 - 9 assessed at the wB97/6-31G(d,p) level of theory..... S28 Figure S39. Current density (square) and luminance (circle) as a function of the bias voltage of ITO/PEDOT:PSS/7/Ca/Al devices (a) and the time-dependent evolution of the EL emission profile over the course of 5 min of continuous operation of 7 at an applied current density of 3x10⁴ mA cm⁻² respectively..... S30 Table S8. Melting points (T_m) and decomposition temperature $(T_d, at 5\%)$ decomposition) for pyrene, TPP, and 1 - 9.... S30

Figure S1. Crystal packing of compounds a) 1, b) 2, c) 4, d) 5, e) 7, and f) 9.

Figure S2. ¹H NMR of 1,3,6,8-tetrakis(4-(*tert*-butyl)phenyl)pyrene (1) in CDCl₃.

Figure S3. ¹³C NMR of 1,3,6,8-tetrakis(4-(*tert*-butyl)phenyl)pyrene (1) in CDCl₃.

NMR

Figure S4. ¹H NMR of 1,3,6,8-tetrakis(4-phenoxyphenyl)pyrene (2) in CDCl₃.

Figure S5. ¹³C NMR of 1,3,6,8-tetrakis(4-phenoxyphenyl)pyrene (2) in CDCl₃.

Figure S6. ¹H NMR of 1,3,6,8-tetrakis(3,4,5-trimethoxyphenyl)pyrene (3) in CDCl₃.

Figure S7. ¹³C NMR of 1,3,6,8-tetrakis(3,4,5-trimethoxyphenyl)pyrene (3) in CDCl₃.

Figure S8. ¹H NMR of 1,3,6,8-tetrakis(4-(methylthio)phenyl)pyrene (4) in CDCl₃.

Figure S9. ¹³C NMR of 1,3,6,8-tetrakis(4-(methylthio)phenyl)pyrene (4) in CDCl₃.

Figure S10. ¹H NMR of 1,3,6,8-tetrakis(4-fluorophenyl)pyrene (5) in CDCl₃.

Figure S11. ¹³C NMR of 1,3,6,8-tetrakis(4-fluorophenyl)pyrene (5) in CDCl₃.

Figure S12. ¹H NMR of 1,3,6,8-tetrakis(3,5-bis(trifluoromethyl)phenyl)pyrene (7) in CDCl₃.

Figure S13. ¹³C NMR of 1,3,6,8-tetrakis(3,5-bis(trifluoromethyl)phenyl)pyrene (7) in CDCl₃.

Figure S14. ¹H NMR of tetramethyl 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzoate (8) at in CDCl₃.

Figure S15. ¹³C NMR of tetramethyl 4,4',4''-(pyrene-1,3,6,8-tetrayl)tetrabenzoate (8) in CDCl₃.

Figure S16. ¹H NMR of 1,3,6,8-tetrakis(thiophen-2-yl)pyrene (9) in CDCl₃.

Figure S17. ¹³C NMR of 1,3,6,8-tetrakis(thiophen-2-yl)pyrene (9) in CDCl₃.

Figure S18. Normalized absorption, excitation and emission spectrum of pyrene in tetrahydrofuran.

Figure S19. Normalized absorption, excitation and emission spectrum of 1,3,6,8-tetraphenylpyrene (TPP) in tetrahydrofuran.

Figure S20. Normalized absorption, excitation and emission spectrum of 1 in chloroform.

Figure S21. Normalized absorption, excitation and emission spectrum of 2 in chloroform.

Figure S22. Normalized absorption, excitation and emission spectrum of 3 in chloroform

Figure S23. Normalized absorption, excitation and emission spectrum of 4 in chloroform.

Figure S24. Normalized absorption, excitation and emission spectrum of 6 in chloroform

Figure S25. Normalized absorption, excitation and emission spectrum of 7 in chloroform.

Figure S26. Normalized absorption, excitation and emission spectrum of 8 in chloroform.

Figure S27. Fluorescence lifetime profile at various possible emission wavelengths keep the excitation wavelength constant in chloroform for compound **8**.

Figure S28. UV-visible absorption (left) and fluorescence (right) spectra of 1 in different solvent environment.

Figure S29. UV-visible absorption (left) and fluorescence (right) spectra of **2** in different solvent environment.

Figure S30. UV-visible absorption (left) and fluorescence (right) spectra of **3** in different solvent environment.

Figure S31. UV-visible absorption (left) and fluorescence (right) spectra of **4** in different solvent environment.

Figure S32. UV-visible absorption (left) and fluorescence (right) spectra of **6** in different solvent environment.

Figure S33. UV-visible absorption (left) and fluorescence (right) spectra of 7 in different solvent environment.

Figure S34. UV-visible absorption (left) and fluorescence (right) spectra of **8** in different solvent environment.

Figure S35. Plot of Stokes shift vs Δf for compounds 1-9.

Figure S36. Plot of Stokes shift vs $E_T(30)$ for compounds 1-9.

Figure S37. Time-resolved fluorescence decay profile for various compounds 1-4 in different solvents.

Figure S38. Time-resolved fluorescence decay profile for various compounds 5-9 in different solvents.

Figure S39. Current density (square) and luminance (circle) as a function of the bias voltage of ITO/PEDOT:PSS/7/Ca/Al devices (a) and the time-dependent evolution of the EL emission profile over the course of 5 min of continuous operation of 7 at an applied current density of $3x10^4$ mA cm⁻² respectively.

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	∆λ (in cm⁻¹)
1	Chloroform	426	391	2101
2	Chloroform	430	388	2517
3	Chloroform	434	387	2798
4	Chloroform	444	396	2730
5	Chloroform	416	382	2140
6	Chloroform	419	380	2449
7	Chloroform	416	382	2140
8	Chloroform	443	391	3002
9	Chloroform	467	407	3157

Table S1. Absorption, emission maxima and stokes shifts of 1-9 in chloroform.

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	Δλ (in cm⁻¹)
1	1,4-dioxane	425	389	2178
2	1,4-dioxane	429	389	2397
3	1,4-dioxane	432	388	2625
4	1,4-dioxane	441	396	2577
5	1,4-dioxane	415	383	2013
6	1,4-dioxane	419	382	2312
7	1,4-dioxane	419	382	2312
8	1,4-dioxane	441	390	2965
9	1,4-dioxane	466	407	3111

Table S2. Absorption, emission maxima and stokes shifts of 1-9 in 1,4-dioxane.

 Table S3. Absorption, emission maxima and stokes shifts of 1-9 in THF.

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	Δλ (in cm ⁻¹)
1	THF	424	390	2056
2	THF	429	389	2397
3	THF	434	389	2665
4	THF	442	396	2628
5	THF	415	383	2013
6	THF	422	383	2413
7	THF	420	383	2300
8	THF	440	390	2914
9	THF	464	408	2958

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	Δλ (in cm ⁻¹)
1	DMF	428	393	2081
2	DMF	432	391	2427
3	DMF	438	392	2679
4	DMF	447	400	2629
5	DMF	417	384	2061
6	DMF	425	381	2717
7	DMF	427	386	2488
8	DMF	446	393	3024
9	DMF	470	413	2936

Table S4. Absorption, emission maxima and stokes shifts of 1-9 in DMF.

Table S5. Absorption, emission maxima and stokes shift of 1-9 in cyclohexane.

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	Δλ (in cm ⁻¹)
1	cyclohexane	423	387	2199
2	cyclohexane	425	384	2512
3	cyclohexane	432	384	2894
4	cyclohexane	437	396	2369
5	cyclohexane	413	381	2034
6	cyclohexane	415	379	2289
7	cyclohexane	413	382	1965
8	cyclohexane	NON SOLUBLE		
9	cyclohexane	460	403	3075
TPP	cyclohexane	n.d.	n.d.	3220
Pyrene	cyclohexane	n.d.	n.d.	3360

Table S6. Absorption, emission maxima and stokes shift of 1-9 in DMSO.

Compound	Solvent	λ _{max} ^{em} (in nm)	λ _{max} ^{abs} (in nm)	Δλ (in cm⁻¹)
1	DMSO	NON SOLUBLE		
2	DMSO	434	387	2798
3	DMSO	440	395	2589
4	DMSO	450	403	2592
5	DMSO	421	387	2087
6	DMSO	427	386	2488
7	DMSO	427	387	2421
8	DMSO	448	398	2804
9	DMSO	474	416	2941

Table S7. Frontier molecular orbitals depiction involved in the $S_0 \rightarrow S_1$ ($S_0 \rightarrow S_2$ for the case of pyrene) vertical transitions of pyrene, TPP, and 1 - 9 as calculated at the $\omega B97/6-31G(d,p)$ level of theory.

	НОМО	LUMO
Pyrene		
ТРР		
1		

Table S8. Melting points (T_m) and decomposition temperature $(T_d, \text{ at } 5\% \text{ decomposition})$ for pyrene, TPP, and 1 - 9.

Compound	Substituent	$T_m(^{\circ}C) + -0.5$	T_d (°C)
Pyrene		150.4 (Lit ¹ 151)	211.3
TPP (1,3,6,8-	-H	299.4	372.0
tetraphenylpyrene)			
1	<i>tert</i> -butyl	>410.0	439.1
2	-OC ₆ H ₅	276.1	503.6
3	-OCH ₃ (x 3)	325.0	408.7
4	-SCH ₃	318.5	392.4
5	-F	309.0	381.8
6	-F (x 2)	> T _d	368.2
7	-CF ₃ (x 2)	314.7	318.4
8	-CO ₂ CH ₃	345.8	410.0
9	thienyl	306.4 (Lit ² 308)	400.1

1. J. Yoon, A. J. Lesser and T. J. McCarthy, *PMSE Prepr.*, 2007, **97**, 742.

2. H. Zhang, Y. Wang, K. Shao, Y. Liu, S. Chen, W. Qiu, X. Sun, T. Qi, Y. Ma, G. Yu, Z. Su and D. Zhu, Chem. Commun. 2006, 755-757.