Supplementary Information

Tetraphenylethene-based Zn complexes for high sensitive detection

of single-stranded DNA

Sheng Wang, Zece Zhu, Danqing Wei and Chuluo Yang*

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.

Corresponding Author: Fax: +86 27-68756757, E-mail: clyang@whu.edu.cn

Figure S1 Fluorescence spectra of 10 μ M Z-TPE2Zn (A, C, E, G) and E-TPE2Zn (B, D, F, H) upon addition of various DNA in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM. λ_{ex} = 330 nm.

Figure S2 Fluorescence spectra of 10 μ M Z-TPE2Zn (A, C, E) and E-TPE2Zn (B, D, F) upon addition of various DNA in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM. λ_{ex} = 330 nm.

Figure S3 Fluorescence spectra of 10 μ M TPE4Zn (A, B, C) upon addition of various DNA in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM. λ_{ex} = 330 nm.

Figure S4 Fluorescence spectra of 10 μ M EB (A, B, C) upon addition of various DNA in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM. λ_{ex} = 530 nm.

Figure S5 Absorption spectra of 10 μ M *E*-TPE2Zn (E, F, G, H) upon addition of various nucleotides in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM.

Figure S6 The nonlinear relationship of the aborption intensity of 10 μ M Z-TPE2Zn (A, B, C, D) and *E*-TPE2Zn (E, F, G, H) decrease of various nucleotides in 10 mM HEPES solutions (pH = 6.4) at room temperature. [Zn(NO₃)₂] = 0.1 mM. Insert: K₁ is dissociation constant.

Figure S7 Absorption spectra of 2.5 μ M G5 at room temperature and then heated over 80 °C in 10 mM HEPES solutions (pH = 6.4). [Zn(NO₃)₂] = 0.1 mM.

_		
	Z-TPE2Zn	<i>E</i> -TPE2Zn
No DNA	0.005	0.01
T5	0.65	0.29
G5	0.53	0.18
A5	0.013	0.04
C5	0.014	0.013
T10	0.66	0.13
G10	0.44	0.22
A10	0.72	0.46
C10	0.47	0.12
X10	0.75	0.31
Y10	0.55	0.31

Table S1. The fluorescence quantum yields of TPE2Zn in the presence of various DNA^a

 $a[Base] = 15 \ \mu M. \ [TPE2Zn] = 10 \ \mu M. \ Buffer: 10 \ mM \ HEPES \ (pH = 6.4). \ [Zn(NO_3)_2] = 0.1 \ mM.$