Supplementary

Effects of interfacial transition layers on the electrical properties of individual $Fe_{30}Co_{61}Cu_9/Cu$ multilayered nanowires

Hongbin Ma,^{a‡} Junwei Zhang,^{a‡} Hong Zhang,^a Qianqian Lan,^a Chaoshuai Guan,^a Qiang Zhang,^b Feiming Bai,^c Yong Peng^{a*} and Xixiang Zhang,^{b*}

Fig. S1 (a) Cyclic voltammetry recorded from a FeCo–Cu electrolytic solution used for the electrodeposition of multilayeredFe₃₀Co₆₁Cu₉/Cu nanowires at a scanning rate of10 mV/s. (b) Typical time-dependence curves of the applied deposition potential versus SCE (blue curve) and the observed current density (red curve) during the growth of Fe₃₀Co₆₁Cu₉/Cu MNWs.

Fig. S2 HR-TEM images of grains inside a: (a) single-phase Cu nanowire; (b) Cu layer in a $Fe_{30}Co_{61}Cu_9/Cu$ MNW; (c) single-phase $Fe_{30}Co_{61}Cu_9$ nanowire; and (d) $Fe_{30}Co_{61}Cu_9$ layer in a $Fe_{30}Co_{61}Cu_9/Cu$ nanowire. Insets present the corresponding statistical grain size chart.

Fig. S3 SEM images of positions used to measure the resistance of single $Fe_{30}Co_{61}Cu_9/Cu$ MNWs; results were used to determine the R_T-L curve in Fig. 5 (a).

Fig. S4 SEM images of positions used to measure single-phase Cu nanowires, which were used to determine the R_c -L curve in Fig. 5b.

Fig. S5 SEM images of the positions used to measure single $Fe_{31}Co_{60}Cu_9$ nanowires, which wereused to determine the R_T -L curve in Fig. 5f.