Electronic Supporting Information For

Modulating High-Energy Visible Light Absorption to Attain Neutral-State Black Electrochromic Polymers

Wei Teng Neo,^{a,b} Ching Mui Cho,^aZugui Shi,^a Soo-Jin Chua,^{a,c} Jianwei Xu^{a,d,*}

^a Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602

^b NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456

^c Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583

^d Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

Email: jw-xu@imre.a-star.edu.sg

Contents

- 1. NMR, GPC, TGA of Polymers P1-P3
- 2. UV-visible Spectra of P1-P3 Solutions
- 3. Cyclic Voltammograms of P1-P3 Thin Films
- 4. Summary of Optical and Electrochemical Properties of P1-P3
- 5. Spectroelectrochemical Graphs of P2 and P3 ECDs
- 6. Device Stability of P1 and P3 ECDs
- 7. Summary of Electrochromic Performance of P1-P3 ECDs
- 8. Computational Calculations

1 NMR, GPC, TGA of Polymers P1-P3

Figure S1 ¹H NMR spectrum of P1.

Figure S2 ¹H NMR spectrum of P2.

Figure S3 ¹H NMR spectrum of P3.

Figure S4 GPC plot of P1.

Figure S5 GPC plot of P2.

Figure S6 GPC plot of P3.

Figure S7 TGA plots of P1-P3.

2 UV-visible Spectra of P1-P3 Solutions

Figure S8 (a) UV-visible spectra and (b) photos of P1-P3 dilute solutions in chloroform.

3 Cyclic Voltammograms of P1-P3 Thin Films

Figure S9 Cyclic voltammograms of **P1-P3** in comparison to DPP ProDOT. Measurements recorded in 0.1M LiClO₄/ACN electrolyte/solvent couple at a scan rate of 50 mV/s calibrated vs. ferrocene/ferrocenium couple.

4 Summary of Optical and Electrochemical Properties of P1-P3

Polymer	λ _{max} (nm)		λ _{onset} (nm)		E _a opt	E _{ox.onset}	НОМО	LUMO
	Solution	Film	Solution	Film	(eV)ª	(V) ^b	(eV) ^c	(eV) ^d
P1	463, 708, 774(sh)	462, 712, 784(sh)	860	872	1.42	0.26	-5.06	-3.64
P2	494, 718, 770(sh)	501, 720, 777(sh)	867	883	1.40	0.18	-4.98	-3.58
P3	500, 714, 770(sh)	504, 720, 777(sh)	863	883	1.40	0.21	-5.01	-3.61

Table S1 Optical and Electrochemical Properties of P1-P3.

 $a E_{g^{opt}} = 1240/\lambda_{onset,film}$. $b Values are calculated vs ferrocene. <math>c E_{HOMO} = -(E_{onset,ox vs ferrocene}) - 4.8$. $d E_{LUMO} = E_{HOMO} + E_{g^{opt}}$.

5 Spectroelectrochemical Graphs of P2 and P3 ECDs

Figure S10 Spectroelectrochemical graphs of (a) P2 and (b) P3 ECDs.

6 Device Stability of P1 and P3 ECDs

Figure S11 Switching cycles (1-40 and 961-1000) of (a) **P1** and (b) **P3** ECDs switched at 20 s cycles between +1.6 and -1.6 V at 1500 nm. A 'break-in' period of 20 cycles was allowed.

	Absorbance (a.u.)	Photopic Contrast (%)ª	$\lambda_1 {}^b$			λ ₂ (1500 nm)				
Polymer			Contrast (%)	T _b (S) ^c	т _с (s) ^d	CE (cm²/C) ^e	Contrast (%)	T _b (S) ^c	τ _c (s) ^d	CE (cm²/C) ^e
P1	0.62	17.2	26.4	61.38	2.00	200	59.7	4.45	19.89	253
P1	0.70	15.3	25.8	56.35	1.81	182	61.3	4.8	19.77	230
P1	0.82	11.2	17.9	75.95	3.40	130	57.6	11.33	24.51	149
P1	0.91	11.4	11.6	81.36	7.91	95	52.5	28.16	31.88	107
P1	1.08	10.1	11.9	80.41	8.34	98	53.0	29.71	31.52	108
P2	0.63	13.6	23.0	33.99	3.07	130	60.3	5.95	17.72	243
P2	0.73	12.0	21.0	41.42	3.41	115	54.0	9.33	20.39	152
P2	0.85	12.9	18.0	47.73	4.64	100	56.1	14.7	48.51	138
P2	0.93	11.5	18.9	39.88	3.14	93	54.8	11.03	22.57	126
P2	1.06	10.6	15.8	42.72	4.58	101	53.2	17.26	35.38	111
P3	0.61	13.3	15.1	72.91	14.57	107	46.0	29.13	69.39	193
P3	0.70	14.2	15.2	77.99	22.1	118	48.5	32.09	67.41	186
P3	0.81	13.3	15.8	76.89	14.85	134	48.4	27.23	66.35	200
P3	0.90	12.6	13.5	80.54	24.47	115	50.3	38.93	69.52	181
P3	0.98	12.3	15.7	79.08	17.28	147	58.0	28.33	65.42	201

Table S2 Electrochromic Performance of P1-P3 ECDs.

^a Δ%T integrated over 400 – 700 nm. ^b P1: 736 nm; P2: 790 nm; P3: 785 nm. ^c Bleaching time where bleaching refers to the process in which the percent transmittance changes from a lower value to a higher value. ^d Coloration time where coloration refers to the process in which the percent transmittance changes from a higher value to a lower value. ^e Coloration efficiency.

8 Computational Calculations

Figure S12 Molecular structures for computational study.

dihedral angle	(degrees)	dihedral angle	(degrees)
1	-9.6980	3	6.9758
2	-10.1765	4	7.0290
dihedral angle	(degrees)	dihedral angle	(degrees)
5	7.0206	7	-10.1565
6	6.9657	8	-9.6791

Figure S13. DFT optimized geometry and HOMO, LUMO (isovalue = 0.03) of M1.

dihedral angle	(degrees)	dihedral angle	(degrees)
1	-4.0973	3	3.7340
2	-5.2885	4	4.8614

Figure S14. DFT optimized geometry and HOMO, LUMO (isovalue = 0.03) of M2.

dihedral angle	(degrees)	dihedral angle	(degrees)
1	5.3673	3	5.3739
2	4.4677	4	4.4740

Figure S15. DFT optimized geometry and HOMO, LUMO (isovalue = 0.03) of M3.

Figure S16. TD-DFT calculated UV-VIS spectrum (plotted with peak half-width at half height 0.15 eV or 1209.83 cm⁻¹) of **M1**.

Figure S17. TD-DFT calculated UV-VIS spectrum (plotted with peak half-width at half height 0.15 eV or 1209.83 cm⁻¹) of **M2**.

Figure S18. TD-DFT calculated UV-VIS spectrum (plotted with peak half-width at half height 0.15 eV or 1209.83 cm⁻¹) of **M3**.