Supporting Information

Fluoranthene Derivatives as Blue Fluorescent Materials for Non-doped Organic Light-Emitting Diodes

Shiv Kumar¹, Deepak Kumar¹, Yogesh Patil², Satish Patil^{1*}

¹Solid Sate and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore 560012, India
²Inorganic and Physical Chemistry (IPC), Indian Institute of Science, Bangalore 560012, India

Corresponding Author *Prof. Satish Patil Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560012 INDIA E-mail: <u>satish@sscu.iisc.ernet.in</u> Phone: +91 80 2293-2651 **Table of contents**

- 1. Synthetic procedures of precursor materials and fluoranthene derivatives
- 2. ¹H & ¹³C NMR spectra of fluoranthene derivatives
- 3. Mass spectra fluoranthene derivatives
- 4. ORTEP diagram
- 5. Selective crystallographic details
- 6. Summary of torsion angles
- 7. Simulated UV-visible spectra
- 8. Assignment of selective key electronic transitions in absorption spectra
- 9. CIE 1931 chromaticity plot

1. Synthesis of precursor materials

+ KOH ethanol reflux, 15 min DPC

7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-one (DPC)

Procedure

A two-necked 250 mL round bottom flask was equipped with a reflux condenser and rubber septum and charged with acenenapthenequinone (5.00 g, 27.5 mmol) and diphenylacetone (5.75 g, 27.5 mmol). Ethanol (70 mL) was added and the mixture brought to reflux, at which point ethanolic potassium hydroxide (2.5 mL) was added drop by drop. The reaction immediately became violent and a black precipitate formed. After 15 minutes the reaction vessel was capped and cooled to 0 °C. Pure DPC (9.10 g, 93% yield) was then collected by filtration as a deep purple crystalline solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.01 (d, *J*= 7 Hz, 2H), 7.9 (d, *J*= 8.2 Hz, 2H), 7.8 (d, *J*= 7.3 Hz, 4H), 7.6 (t, *J*=7.4, 2H), 7.5 (t, *J*= 7.6, 4H), 7.4 (t, *J*= 7.4, 2H).¹³C NMR (101 MHz, CDCl₃): δ 204.51, 193.38, 128.96, 128.75, 128.52, 121.06, 89.97, 65.11, 52.96, 40.14, 39.93, 39.72, 39.51, 39.30, 39.09, 38.88, 0.39.

1-(Hexyloxy)-4-iodobenzene (P1)

A mixture of 4-Iodophenol (5.0 g, 22.7 mmol) and anhydrous potassium carbonate (6.28 g, 45.5 mmol) was taken in *N*,*N*-dimethylforamide (20 mL). To the above reaction mixture 1-bromohexane (5.63 g, 34.1 mmol) was added. Reaction mixture was reflux for 16h. Reaction mixture was poured into 150 mL water and extracted with dichloromethane. The organic layer was washed with distilled water. The organic layer was dried over anhydrous sodium sulphate, filtered and subjected to rotary evaporation. Product was further purified using column chromatography with 2% ethyl acetate/hexane as eluent. Colourless liquid was obtained (90% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.52 (d, 2H, *J*= 8.8 Hz), 6.66 (d, 2H, *J*= 9.2 Hz), 3.90 (t, 2H, *J*= 6.4 Hz), 1.79-1.75 (m, 2H), 1.47-1.43 (m, 2H), 1.35-1.31 (m, 4H), 0.90 (t, 3H, *J*= 4.32 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.01, 138.12, 116.93, 82.36, 77.32, 77.00, 76.68, 68.11, 31.53, 29.09, 25.65, 22.56, 13.99.

((4-(hexyloxy)phenyl)ethynyl)trimethylsilane (P2)

Procedure

A reaction mixture of compound P1 (2.0 g, 6.5 mmol), trimethylsilyacetylene (0.7 g, 7.0 mmol), bis(triphenylphosphinepalladium(II))dichloride (4% mol) and copper iodide (10% mol) was taken in triethylamine (20 mL). In above reaction mixture was stirred at room temperature for 15 min and then refluxed for 4h under argon atmosphere. Reaction mixture was cooled to room temperature and subjected to solvent evaporation under reduced pressure. Residue was directly adsorbed over silica gel and purified using column chromatography

with 2% ethylacetate/hexane as eluent. Colourless liquid was obtained. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.38 (d, 2H, *J*= 8.8 Hz), 6.79 (d, 2H, *J*= 8.8 Hz), 3.93 (t, 2H, *J*= 6.8 Hz), 1.78-1.72 (m, 2H), 1.46-1.42 (m, 2H), 1.34-1.31 (m, 4H), 0.90 (t, 3H, *J*= 4.32 Hz), 0.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.36, 133.42, 115.01, 114.34, 105.34, 92.24, 77.32, 77.00, 76.68, 68.04, 31.56, 29.14, 25.67, 22.57, 13.99, 0.06.

Synthesis of 1-ethynyl-4-(hexyloxy)benzene (P3)

Procedure

Compound **P2** (1.7 g, 6.2 mmol) was treated with anhydrous potassium carbonate (85 mg, 0.6 mmol) in methanol (20 mL) at room temperature for 3 h under argon atmosphere. Solvent was evaporated and residue was extracted with dichloromethane/water mixture. Organic layer dried over anhydrous sodium sulphate, filtered and subjected to rotary evaporation. Product was further purified using column chromatography with 2% ethylacetate/hexane as eluent. Colourless liquid was obtained(95% yield).¹H NMR (400 MHz, CDCl₃, ppm): δ 7.4 (d, 2H, *J*= 8.8 Hz), 6.82 (d, 2H, *J*= 8.8 Hz), 3.94 (t, 2H, *J*= 6.8 Hz), 2.98 (s, 1H), 1.80-1.73 (m, 2H), 1.53-1.43 (m, 2H), 1.35-1.31 (m, 4H), 0.91 (t, 3H, *J*= 4.32 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.56, 133.55, 114.47, 113.89, 83.78, 77.32, 77.00, 76.68, 75.61, 68.08, 31.55, 29.12, 25.67, 22.57, 13.99.

1,2-bis(4-(hexyloxy)phenyl)ethyne (P4)

A mixture of compound **P1** (1.9 g, 6.2 mmol), **3** (1.2 g, 5.9 mmol), bis(triphenylphosphinepalladium(II))dichloride (4% mol) and copper iodide (10% mol) was taken in triethylamine (10 mL). In above reaction mixture was stirred at room temperature for 15 min, and then refluxed for 4 h under argon atmosphere. Reaction mixture was cooled to room temperature and solvent was evaporated and residue directly adsorbed over silica gel and purified using column chromatography with 2% ethylacetate/hexane as eluent. Crystalline white flakes were obtained(87% yield).¹H NMR (400 MHz, CDCl₃, ppm): δ 7.42 (d, 4H, *J*= 8.8 Hz), 6.82 (d, 4H, *J*= 8.8 Hz), 3.95 (t, 4H, *J*= 6.8 Hz), 1.80-1.73 (m, 4H), 1.53-1.43 (m, 4H), 1.35-1.31 (m, 8H), 0.91 (t, 6H, *J*= 4.32 Hz). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 138.17, 132.85, 115.55, 114.54, 87.98, 68.10, 31.60, 29.71, 29.20, 25.72, 22.61.Anal.Calcd for C₂₆H₃₄O₂: C, 82.49; H, 9.05; O, 8.45. Found: C, 82.31; H, 8.91.

4-((trimethylsilyl)ethynyl)benzonitrile (P5)

A reaction mixture of 4-bromobenzonitrile (1.82 g, 10mmol), trimethylsilyacetylene (0.98 g, 11.0 mmol), tetrakis(triphenylphosphinepalladium(0)) (4% mol) and copper iodide (10% mol) was taken in triethylamine (20 mL). In above reaction mixture was stirred at room temperature for 15 min and then refluxed for 4h under argon atmosphere. Reaction mixture was cooled to room temperature and subjected to solvent evaporation under reduced pressure. Residue was directly adsorbed over silica gel and purified using column chromatography with 2% ethylacetate/hexane as eluent.White solid powder was obtained (yield 85 %). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.59 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 0.26 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 132.43, 131.90, 128.01, 118.39, 111.79, 102.97, 99.55, 29.68, -0.30.

4-ethynylbenzonitrile (P6)

Procedure

Compound **P5** (1.7 g, 6.2 mmol) was treated with anhydrous potassium carbonate (85 mg, 0.6 mmol) in methanol (20 mL) at room temperature for 3 h under argon atmosphere. Solvent was evaporated and residue was extracted with dichloromethane/water mixture. Organic layer dried over anhydrous sodium sulphate, filtered and subjected to rotary evaporation. Product was further purified using column chromatography with 2% ethylacetate/hexane as eluent. Colourless liquid was obtained (95% yield). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 3.30 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 132.65, 132.00, 126.98, 118.21, 112.33, 81.84, 81.51, 29.67.

Synthesis of fluoranthene derivatives 8-(4-cyanophenyl)-7,10-dipenylfluoranthene (CN-TPF)

Procedure

The compound DPC (1 mmol) and **P6** (1 mmol) were dissolved in diphenyl ether (5 mL) and kept in a sealed Teflon tube at 220 °C. After 24 h, reaction mixture was cooled down to room temperature; diphenyl ether was stripped under vacuum. Residue was diluted with hexane to precipitate the crude product. The resulting yellow solid was purified via column chromatography using 4:1 hexane/chloroform as eluent to afford green crystalline solid (yield 66%).¹H NMR (400 MHz, CDCl₃, ppm): δ 7.76 (t, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.51 (m, 3H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.39 (dd, *J* = 13.4, 5.5 Hz, 4H), 7.35 – 7.26 (m, 7H), 6.72 (d, *J* = 7.1 Hz, 1H).¹³C NMR (100 MHz, CDCl₃, ppm): δ 146.03, 140.35, 138.69, 138.55, 138.42, 138.18, 136.71, 136.14, 135.89, 135.50, 133.12, 131.37, 130.61, 130.20, 129.73, 129.03, 128.74, 128.04, 127.76, 127.68, 127.62, 127.06, 126.97, 123.54, 123.33, 118.95, 110.11. ESI-MS: 455.27 (M⁺). Elemental Analysis: (C₃₅H₂₁N) Calc. (%): C, 92.28; H, 4.65; N, 3.07; Found (%): C, 92.23; H, 4.67; N, 3.10.

7,8,10-triphenylfluoranthene (TPF)

Same as above. Green crystalline solid (yield 66%).¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72 (dd, J = 10.1, 7.3 Hz, 4H), 7.53 (dt, J = 20.3, 7.0 Hz, 3H), 7.36 (d, J = 11.0 Hz, 6H), 7.30 (dd, J = 16.1, 9.0 Hz, 3H), 7.23 (d, J = 7.1 Hz, 2H), 7.17 (q, J = 6.4 Hz, 3H), 6.69 (d, J = 7.1 Hz, 1H).¹³C NMR (100 MHz, CDCl₃, ppm): δ 141.01, 140.79, 139.33, 138.22, 137.92, 136.62, 136.18, 135.92, 135.71, 133.14, 131.14, 130.33, 129.96, 129.72, 129.13, 128.62, 128.45, 127.80, 127.62, 127.53, 127.27, 126.63, 126.33, 123.34, 122.91. ESI-MS: 431.73 (M⁺+H). Elemental Analysis: (C₃₄H₂₂) Calc. (%): C, 94.85; H, 5.15; Found (%): C, 94.18; H, 5.82

7,10-diphenyl-8-(p-tolyl)fluoranthene (CH₃-TPF)

Procedure

Same as above. Greenish-Yellow crystalline powder (yield 65 %). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.73 – 7.67 (m, 4H), 7.57 – 7.48 (m, 3H), 7.40 – 7.36 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.32 (s, 1H), 7.28 (d, *J* = 7.1 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.13 – 7.09 (m, 2H), 6.97 (d, *J* = 7.9 Hz, 2H), 6.65 (d, *J* = 7.1 Hz, 1H), 2.26 (s, 3H).¹³C NMR (101 MHz, CDCl₃, ppm): δ 140.85, 140.68, 139.51, 138.26, 138.02, 137.90, 136.68, 136.17, 135.97,

135.91, 135.51, 133.13, 131.22, 130.32, 129.80, 129.70, 129.13, 128.61, 128.47, 128.30, 127.76, 127.60, 127.51, 127.22, 126.56, 123.31, 122.83, 21.07. ESI-MS: 445.73 (M⁺+H). Elemental Analysis: (C₃₅H₂₄) Calc. (%): C, 94.56; H, 5.44; Found (%): C, 94.49; H, 5.51.

8-(4-(hexyloxy)phenyl)-7,10-diphenylfluoranthene (asym-TPF)

Procedure

Same as above. Green crystalline powder was obtained (yield 70 %). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.70 (t, J = 7.4 Hz, 12H), 7.52 (ddd, J = 14.4, 8.4, 4.5 Hz, 11H), 7.46 – 7.21 (m, 26H), 7.12 (d, J = 8.7 Hz, 6H), 6.68 (dd, J = 15.5, 7.9 Hz, 9H), 3.87 (t, J = 6.6 Hz, 6H), 1.79 – 1.67 (m, 6H), 1.41 (dd, J = 13.7, 6.2 Hz, 7H), 1.37 – 1.25 (m, 10H), 0.89 (t, J = 6.4 Hz, 7H).¹³C NMR (101 MHz, CDCl₃, ppm): δ 157.74, 140.88, 140.42, 139.56, 138.26, 137.90, 136.71, 136.19, 136.00, 135.34, 133.17, 133.13, 131.16, 130.96, 130.33, 129.70, 129.13, 128.60, 128.51, 127.75, 127.60, 127.50, 127.21, 126.56, 126.51, 123.29, 122.77, 113.62, 67.86, 31.60, 29.26, 25.72, 22.58, 14.01. ESI-MS: 531.60 (M⁺+H). Elemental Analysis: (C₄₀H₃₄O) Calc. (%): C, 90.53; H, 6.46; O, 3.01; Found (%): C, 90.06; H, 6.52.

8,9-bis(4-(hexyloxy)phenyl)-7,10-diphenylfluoranthene (sym-TPF)

Same as above. Greenish-yellow crystalline powder was obtained (yield 60 %). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.23 (m, 12H), 6.77 (d, *J* = 8.5 Hz, 4H), 6.56 (d, *J* = 7.1 Hz, 2H), 6.43 (d, *J* = 8.5 Hz, 4H), 3.74 (t, *J* = 6.7 Hz, 4H), 1.71 – 1.59 (m, 4H), 1.32 (ddd, *J* = 15.9, 13.4, 7.7 Hz, 16H), 0.88 (t, *J* = 6.7 Hz, 6H).¹³C NMR (100 MHz, CDCl₃, ppm): δ 156.60, 140.66, 140.17, 137.53, 136.64, 136.34, 133.26, 132.25, 130.09, 129.60, 128.16, 127.58, 126.74, 126.34, 123.04, 112.86, 67.68, 31.62, 29.68, 29.22, 25.67, 22.55, 14.00. ESI-MS = 707.93 (M⁺+H). Elemental Analysis: (C₅₂H₅₀O₂) Calc. (%): C, 88.34; H, 7.13; O, 4.53; Found (%): C, 88.19; H, 7.57.

Figure S2 ¹³C NMR spectra of CN-TPF.

12

Figure S1 ¹H NMR spectra of CN-TPF

¹H NMR (400 MHz, CDØ\$7.76 (t, J= 8.7 Hz, 2H), 7.69 (d= 7.3 Hz, 2H), 7.60 - 7.51 (m, 3H), 7.46/td\$1 Hz, 2H), 7.39 (dd= 13.4, 5.5 Hz, 4H), 7.35 - 7.26 (m, 7H), 6.72/(d, 1 Hz, 1H).

CN-M-1

M-1

¹H NMR (400 MHz, CDØ\$7.72 (dd, *J*= 10.1, 7.3 Hz, 4H), 7.53 (dt= 20.3, 7.0 Hz, 3H), 7.36 (dt= 11.0 Hz, 6H), 7.30 (ddt= 16.1, 9.0 Hz, 3H), 7.23 (dt= 7.1 Hz, 2H), 7.17 (dt= 6.4 Hz, 3H), 6.69 (dt= 7.1 Hz, 1H).

Figure S3 ¹H NMR spectra of TPF.

M-1

¹⁰ C NMR (100 MHz, CD66141 01, 140.79, 139.33, 138.22, 137.92, 136.62, 136.18, 135.92, 135.71, 133.14, 131.14, 130.33, 129.96, 129.72, 129.13, 128.62, 128.45, 127.80, 127.62, 127.53, 127.2 123.34, 122.91, 77.32, 77.00, 76.68, 31.92, 30.03, 29.69, 29.35, 22.68, 14.10.

Figure S4 ¹³C NMR spectra of TPF.

CH3-M-1

¹H NMR (400 MHz, CD057.3 - 7.67 (m, 4H), 7.57 - 7.48 (m, 3H), 7.40 - 7.36 (m, 5H), 7/3-48(**i**, Hz, 2H), 7.32 (s, 1H), 7.28 (**i**, 7.1 Hz, 2H), 7.24 (**i**, 8.1 Hz, 1H), 7.13 - 7.09 (m, 2H), 6.97/(**i**, 7.9 Hz, 2H), 6.65 (**i**, 7.1 Hz, 1H), 2.26 (s, 3H).

Figure S5 ¹H NMR spectra of CH₃-TPF.

CH3-M-1

¹³ C NMR (101 MHz, CD06140.85, 140.68, 139.51, 138.26, 138.02, 137.90, 136.68, 136.17, 135.97, 135.91, 135.51, 133.13, 131.22, 130.32, 129.80, 129.70, 129.13, 128.61, 128.47, 128.30, 127.127.22, 126.56, 123.31, 122.83, 77.32, 77.00, 76.68, 21.07.

¹H NMR (400 MHz, CD067.70 (t, J= 7.4 Hz, 12H), 7.52 (ddd= 14.4, 8.4, 4.5 Hz, 11H), 7.46 - 7.21 (m, 26H), 7.92 (dt Hz, 6H), 6.68 (dd= 15.5, 7.9 Hz, 9H), 3.87 (Hz, 6H), 1.79 - 1.67 (m, 6H), 1.41 (dd= 13.7, 6.2 Hz, 7H), 1.37 - 1.25 (m, 10H), 0.39 (d, Hz, 7H).

Figure S7 ¹H NMR spectra of asym-TPF.

M-7

¹³C NMR (101 MHz, CDQ\$157.74, 140.88, 140.42, 139.56, 138.26, 137.90, 136.71, 136.19, 136.00, 135.34, 133.17, 133.13, 131.16, 130.96, 130.33, 129.70, 129.13, 128.60, 128.51, 127.75, 127.6 126.56, 126.51, 123.29, 122.77, 113.62, 77.32, 77.00, 76.68, 67.86, 31.60, 29.26, 25.72, 22.58, 14.01. CH₃

Figure S8 ¹³C NMR spectra of asym-TPF.

M-7

M-3

¹¹ C NMR (100 MHz, CD06156.60, 140.66, 140.17, 137.53, 136.64, 136.34, 133.26, 132.25, 130.09, 129.60, 128.16, 127.58, 126.74, 126.34, 123.04, 112.86, 77.32, 77.00, 76.68, 67.68, 31.62, 29. 22.55, 14.00.

Figure S12 Mass spectra of TPF.

Figure S15 Mass spectra of sym-TPF.

Figure S16 Supramolecular packing diagram of fluoranthene derivatives.

Molecule	CN-TPF	TPF	CH ₃ -TPF	asym-TPF	sym-TPF
Formula	$C_{35}H_{21}N$	$C_{34}H_{22}$	$C_{35}H_{24}$	$C_{40}H_{34}O$	$C_{56}H_{63}O_{4.5}$
Formula weight	455.53	430.52	444.54	530.67	808.06
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Temperature	298K	110K	110K	110K	298K
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$
a (Å)	13.735(2)	10.417(1)	10.717(5)	10.661(1)	12.522(2)
b (Å)	17.809(2)	24.645(1)	21.264(5)	12.346(1)	24.786(6)
c (Å)	10.840(1)	8.672(1)	11.420(5)	13.545(1)	15.897(2)
α(°)	90	90	90	65.98(1)	90
β(°)	112.05(1)	92.51(1)	113.40(1)	69.79(1)	108.86(1)
γ(°)	90	90	90	64.80(1)	90
Volume (Å ³)	2457.5(5)	2224.3(2)	2388.3(16)	1443.2(1)	4669.0(1)
Z	4	4	4	2	4
Density (g cm ⁻³)	1.231	1.286	1.236	1.223	1.115
μ (mm ⁻¹)	0.071	0.073	0.070	0.071	0.071
F (000)	952	904	936	564	1740
Reflections	55107	18570	19714	23110	94880
collected					
Unique	4315	4331	4596	5603	8196
reflections					
L.S.	325	307	318	422	489
parameters					
R _{int}	0.0585	0.0422	0.0573	0.0399	0.1411
$R_1[I > 2\sigma(I)]$	0.0600	0.0406	0.0878	0.0435	0.1392
$wR_2[I > 2\sigma(I)]$	0.1688	0.0945	0.1669	0.1067	0.3497
$\Delta \rho_{min, max}$ (e Å ⁻³)	-0.219/0.292	-0.211/0.193	-0.280/0.248	-0.193/0.247	-0.464/0.636
GOOF	1.100	1.009	1.116	1.070	1.226
CCDC No.	1402234	965009	965006	965010	1402235

Table S1. Selective Crystallographic details of fluoranthene derivatives.

Compounds	Torsion angle about C13- C23(°)	Torsion angle about C16- C17(°)	Torsion angle about C15-C29(°)	Torsion angle about C14- C35(°)
CN-TPF	54.3(4)	-75.2(3)	-49.4(4)	-
TPF	128.4(1)	-61.6(2)	-51.4(2)	-
CH ₃ -TPF	83.4(5)	-67.5(5)	-53.9(5)	-
asym-TPF	-56.1(2)	65.2(2)	62.6(2)	-
sym-TPF	68.2(7)	-101.2(6)	-118.4(5)	62.5(7)

Figure S17 Cyclic voltammograms of fluoranthene derivatives in acetonitrile. Fc/Fc⁺ couple was used as an internal reference and Bu4NF6 was used as supporting electrolyte with scan rate of 50 mV s⁻¹.

Figure S18 Simulated UV-visible absorption spectra of fluoranthene derivatives at TD-DFT/M062X/3-21G level of theory.

Table S3. Selected UV-visible key transitions of fluoranthene derivatives at the TD-DFT/M062X/3-21G level of theory in gaseous phase.

Compound	Expt.	TD-DFT/M062X/3-21G		/3-21G	Vantanaitiana
	(nm)	λ (nm)	λ (eV)	f	Key transitions
CN-TPF	376	358	3.46	0.31	$H-1\rightarrow L, H\rightarrow L$
	329	285	4.33	0.10	$H-4\rightarrow L, H-2\rightarrow L$
	302	279	4.43	0.63	$H-2\rightarrow L+1, H\rightarrow L+1$
	243	241	5.13	0.18	$H-1 \rightarrow L+1, H \rightarrow L+2$
TPF	375 329	362	3.42	0.25	$H-1 \rightarrow L, H \rightarrow L, H \rightarrow L+1$
	295 243	279	4.43	0.12	$H-5\rightarrow L, H-3\rightarrow L, H-1\rightarrow L, H\rightarrow L+1$
CH ₃ -TPF		498	2.48	0.07	$H-1 \rightarrow L, H \rightarrow L$
	375	415	2.98	0.17	$H-1\rightarrow L, H\rightarrow L, H\rightarrow L+1$
	329	325	3.81	0.32	$\text{H-5}{\rightarrow}\text{L}, \text{H-4}{\rightarrow}\text{L}, \text{H-3}{\rightarrow}\text{L}, \text{H-1}{\rightarrow}\text{L}, \text{H}{\rightarrow}\text{L}{+1}$
	298	312	3.96	0.13	$H-5\rightarrow L, H-4\rightarrow L, H-3\rightarrow L, H-1\rightarrow L+1, H\rightarrow L+1$
	243	279	4.43	0.07	$H \rightarrow L+2, H \rightarrow L+4$
		259	4.78	0.05	$H-2\rightarrow L+1, H-1\rightarrow L+2, H\rightarrow L+4, H\rightarrow L+6, H\rightarrow L+7$
asym -TPF	377	427	2.90	0.10	$H-1\rightarrow L, H\rightarrow L$
	329	356	3.48	0.28	$H-1\rightarrow L, H\rightarrow L, H\rightarrow L+1$
	300	280	4.42	0.62	H-3 \rightarrow L, H \rightarrow L+1
	243	227	5.44	0.22	$H-4\rightarrow L, H\rightarrow L+2, H\rightarrow L+5, H\rightarrow L+6$
sym-TPF	376	360	3.44	0.40	H-1 \rightarrow L, H \rightarrow L+2
	329	309	4.01	0.08	$H-6\rightarrow L, H-2\rightarrow L, H\rightarrow L$
	300	283	4.37	0.57	$H-3\rightarrow L, H\rightarrow L+1$
	243	211	5.85	0.46	$H-1 \rightarrow L+3, H-1 \rightarrow L+6$

Figure S19 CIE 1931 chromaticity plot.

Figure S20 Luminescence efficiency-luminance (LE-L) characteristic plot.