Electronic Supporting Information

Indene-1,3-dionemethylene-4*H*-pyran derivatives containing alkoxy chains of various lengths: Aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes

Yanze Liu,^{*a*} Yunxiang Lei,^{*a*} Fei Li,^{*b*} Jiuxi Chen,^{*a*} Miaochang Liu,^{*a*} Xiaobo Huang,^{**a*} Wenxia Gao,^{*a*} Huayue Wu,^{**a*} Jinchang Ding^{*a*} and Yixiang Cheng^{**b*}

^aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
^bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
E-mail: <u>xiaobhuang@wzu.edu.cn</u> (X. Huang), <u>huayuewu@wzu.edu.cn</u> (H. Wu), and <u>yxcheng@nju.edu.cn</u> (Y. Cheng)

Contents:

Fig. S1 Absorption spectra (a) and fluorescence spectra (b) of 3a-3g (1×10⁻⁵ mol/L) in THF solution.

Table SI	Physical	properties	of IDMP	derivatives in	THF	solution	(s = shoι	ilder p	peak)	•

Compound	$\lambda_{abs} (nm)$	λ_{em} (nm)
3a	442(s), 465, 498	524, 544
3 b	442 (s), 466, 498	529, 542
3c	444 (s), 467, 500	531, 544
3d	444 (s), 467, 500	526, 545(s)
3e	442 (s), 466, 498	530, 547(s)
3f	441 (s), 466, 498	527, 545(s)
3g	442 (s), 467, 499	527, 543

Fig. S2 Fluorescence spectra of 3b-3g (1×10^{-5} mol/L) in THF/water mixtures with different f_w values. The insets depict the changes in fluorescence peak intensity and emission images of the compounds in different water fraction mixtures under a 365-nm UV lamp.

Fig. S3 UV-vis spectra of **3b-3g** (1×10^{-5} mol/L) in THF/water mixtures with different f_w values.

Fig. S4 Fluorescence spectra of **3a**, **3d** and **3f** in methanol/glycerol mixtures $(1 \times 10^{-5} \text{ mol/L}, \text{ containing } 0.5 \text{ vol } \% \text{ THF})$ with different glycerol volume fractions.

Fig. S5 (a) Fluorescence spectra of **3a** $(1 \times 10^{-5} \text{ mol/L})$ in various solvents. (b) Fluorescence spectra of **3a** $(1 \times 10^{-5} \text{ mol/L})$ in THF/DMF mixtures with different DMF volume fractions.

Fig. S6 Fluorescence images of **3b–3d** solid samples taken under a 365-nm UV lamp: (a) assynthesized samples; (b) ground samples; (c) DDP-chloroform samples.

Fig. S7 Images of **3a-3g** solid samples taken under natural light: (a) as-synthesized samples; (b) ground samples; (c) DDP-chloroform samples.

Fig. S8 Fluorescence images of **3f** solid samples taken under natural light: (a) as-synthesized samples; (b) ground samples; (c) fumed samples; (d) the central part of fumed samples was ground; (e) all fumed samples were ground; (f) several drops of EA were dropped onto the ground samples; (g) all ground samples were soaked with EA; (h) and (i) **3f** is used to write "W" with a metal spatula and then fumed using EA; (j) annealed samples; (k) recrystallized samples using CH₃CN as a solvent; (l) DDP-chloroform samples; (m) DDP-THF samples; (n) DDP-EA samples or fumed samples using EA.

Fig. S9 Fluorescence images of **3e** solid samples taken under a 365 nm UV lamp (top) and natural light (bottom), respectively: (a) as-synthesized samples; (b) ground samples; (c) annealed samples; (d) DDP-chloroform samples; (e) DDP-EA samples.

Fig. S10 Fluorescence images of **3g** solid samples taken under a 365-nm UV lamp (top) and natural light (bottom), respectively: (a) as-synthesized samples; (b) ground samples; (c) annealed samples; (d) DDP-chloroform samples; (e) DDP-EA samples.

Fig. S11 Fluorescence spectra of as-synthesized 3a-3g solids.

Fig. S12 Fluorescence spectra of 3a-3e and 3g solid samples under different conditions.

Fig. S13 UV-vis absorption spectra of 3a-3g solid samples under different conditions.

Fig. S14 XRD curves of 3a-3e and 3f solid samples under different conditions.

Fig. S15 The fluorescence microscope image of **3e** (top) and **3f** (bottom): (a) as-synthesized samples; (b) ground samples; (c) DDP-chloroform samples.

derivatives in the solid state.								
Sample	type	$\tau_1(ns)$	$\tau_2(ns)$	A_1	A_2	$<\tau>$ (ns)	$\Phi_{\mathrm{F}}{}^{b}$	
3 a	As-synthesized	0.36	1.92	0.74	0.26	1.40	2.5%	
	Ground	0.44	2.59	0.72	0.28	1.07	n.d. ^c	
	DDP-chloroform	0.59	2.30	0.59	0.41	1.07	n.d.	
3b	As-synthesized	0.33	2.35	0.18	0.82	1.99	4.3%	
	Ground	0.46	1.85	0.42	0.58	1.27	n.d.	
	DDP-chloroform	0.73	2.43	0.57	0.43	1.46	n.d.	
3c	As-synthesized	0.48	1.90	0.75	0.25	0.84	2.7%	
	Ground	0.28	1.54	0.62	0.38	0.76	n.d.	
	DDP-chloroform	0.15	1.49	0.54	0.45	0.75	n.d.	
3d	As-synthesized	0.74	2.22	0.89	0.11	0.90	5.9%	
	Ground	0.43	1.62	0.50	0.50	1.03	n.d.	
	DDP-chloroform	0.48	1.99	0.70	0.30	0.93	n.d.	
3e	As-synthesized	0.09	1.68	0.84	0.16	0.34	7.1%	
	Ground	0.42	2.30	0.52	0.48	1.32	3.7%	
	DDP-chloroform	0.29	1.82	0.56	0.44	0.96	1.7%	
3f	As-synthesized	0.12	0.94	0.81	0.19	0.28	3.9%	
	Ground	0.22	1.88	0.68	0.32	0.75	2.8%	
	DDP-chloroform	0.39	2.38	0.51	0.49	1.37	2.7%	
3g	As-synthesized	0.33	1.76	0.85	0.15	0.54	4.0%	
	Ground	0.29	2.06	0.57	0.43	1.05	2.3%	
	DDP-chloroform	0.59	2.12	0.54	0.46	1.29	2.5%	

Table S2 Fluorescence decay parameters^{*a*} and fluorescence quantum yields (Φ_F) of IDMP derivatives in the solid state.

^{*a*}Determined from $I = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$, where τ_1 and τ_2 are the lifetimes of the shorter- and longer-lived species, and A_1 and A_2 are their respective amplitudes, respectively. The weighted mean lifetime $\langle \tau \rangle$ was calculated by the following equation: $\langle \tau \rangle = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$. ^{*b*}Solid-state emission quantum yields (Φ F) were determined by a FluoroMax-4 (Horiba Jobin Yvon) fluorometer equipped with an integrated sphere. ^{*c*}n.d. = no detection.

Fig. S16 The fluorescence microscope images of 3d, 3e and 3g in THF-water mixture $(1 \times 10^{-5} \text{ mol/L})$ at different f_w values: (a) 3d, $f_w = 70\%$; (b) 3e, $f_w = 70\%$; (c) 3g, $f_w = 30\%$; (d) 3g, $f_w = 70\%$.

Fig. S17 ¹H NMR of compound 2 (CDCl₃, 500 MHz).

Fig. S31 ¹H NMR of 3g (CDCl₃, 500 MHz).

Fig. S32 ¹³C NMR of 3g (CDCl₃, 125 MHz).