Supporting Information for:

Spin-crossover in a homoleptic cobalt(II) complex containing a redox-active NNO ligand

R. A. Taylor,^b A. J. Lough^b and *M. T. Lemaire^{a,b}

^aDepartment of Chemistry, Brandon University, Brandon, MB, R7A2J7, CANADA

^bDepartment of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2 CANADA

^cDepartment of Chemistry, University of Toronto, Toronto, ON, M5S3H6, CANADA

*Corresponding author: <u>mlemaire@brocku.ca</u>

*Current Address: Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, CANADA

Figure S1. Calculated powder X-ray diffraction pattern for 2.

Figure S2. Experimental powder X-ray diffraction pattern for 2.

Figure S4. CV of 2 in CH₂Cl₂ containing ~0.5 M Bu₄NPF₆. Scan rate 100 mV/s.

Figure S5. Anodic differential pulse voltammogram of 2 in CH₂Cl₂. Scan rate 25 mV/s.

Figure S6. Cathodic differential pulse voltammogram of 2 in CH₂Cl₂. Scan rate 25 mV/s.

Figure S7. UV-visible spectrum of **2** in CHCl₃ (blue trace) followed by titration with ethanol (the final spectrum of the titration is the peach trace).

Table S1. Experimental coordinate bond distances (147 K) compared with DFT calculated [B3LYP/6-31G(d,p)] distances for the doublet spin state isomer.

Bond	Experimental distance (Å)	Calculated distance (Å)
	[147(2) K structure]	(doublet spin state)
$Co(1)-N(1)(N_{azo})$	1.9127(17)	1.951
Co(1)-N(4) (N _{azo})	1.8651(17)	1.864
$Co(1)-N(3)(N_{py})$	2.0479(18)	2.143
$Co(1)-N(6)(N_{py})$	1.9685(18)	1.956
Co(1)-O(1)	2.1224(16)	2.147
Co(1)-O(2)	1.9982(15)	1.954