Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

S.R. Sarath Kumar,* Narendra Kurra,* and H.N. Alshareef¹
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST),
Thuwal-23955-6900, Saudi Arabia.

Corresponding author: husam.alshareef@kaust.edu.sa

^{*} These authors contributed equally to the work.

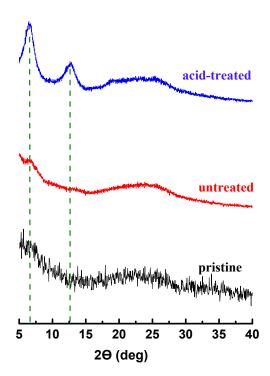
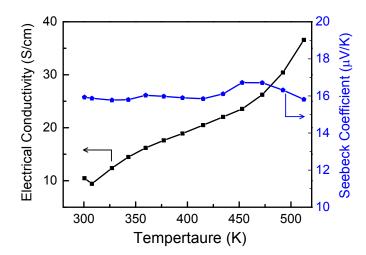



Fig. S1. XRD patterns of pristine, untreated and acid-treated PEDOT:PSS films.

Fig. S2. Temperature dependence of electrical conductivity and Seebeck coefficient of pristine PEDOT:PSS film. Electrical conductivity is very low and the film exhibits semiconducting nature, with electrical conductivity increasing with temperature. The Seebeck coefficient is nearly temperature independent, with variation (< 1 μ V/K) well within the resolution of the Seebeck tester.