SUPPLEMENTARY MATERIAL

Confinement effect on the photophysics of ESIPT fluorophores

Fabiano S. Santos,^{a,b} Elamparuthi Ramasamy,^a V. Ramamurthy^a and Fabiano S. Rodembusch^{b,*}

^aDepartment of Chemistry, University of Miami. 1301 Memorial Drive. Cox Science Building, 230, Coral Gables, Florida 33146-0431.

^bGrupo de Pesquisa em Fotoquímica Orgânica Aplicada. Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre-RS, Brazil. Fax: +55 51 33087304; Tel: +55 51 33087204; E-mail: fabiano.rodembusch@ufrgs.br

1. Materials and Methods	2
2. Structure of the ionic species	3
3. Chemical structure and schematic representation of the host OA	3
4. Titration Experiments	4
5. Photophysical data	7
6. References	18

1. Materials and Methods

The octaacid (OA) and the fluorophores were synthesized by following the literature procedure.^{1,2} ¹H and ¹³C NMR spectra for the fluorophores were recorded on a Varian VNMRs 300 MHz spectrometer. The chemical shifts were expressed as δ (ppm) relative to tetramethylsilane (TMS) as the internal standard and using DMSO-*d*₆ as the solvent.

¹**H NMR titration**: The ¹H NMR titration experiments were carried out on a Bruker 500 MHz NMR spectrometer at 25°C. To 0,6 mL of octaacid solution 1 mM (in 10 mM Na₂B₄O₇ in D₂O) taken in a NMR tube, 0.25 equivalent increments of the guest (2.5 μ L of 60 mM in DMSO-*d*₆) were added till it reached host:guest ratio of 1:1. After shaking the NMR tube for 2 min after each addition the spectra were recorded.

Solution Concentration: The fluorophores in solution were studied at a concentration of 10^{-5} M in acetonitrile, ethanol, dichloromethane, benzene and buffered water (10 mM Na₂B₄O₇ water solution, pH 9).

Inclusion complexes 2:1 (G:H) were studied and prepared by adding 5.0 μ L of 60 mM DMSO-*d*₆ solution of the fluorophores (guest) to 0.6 mL of 1 mM OA in 10 mM Na₂B₄O₇ water solution and diluted using the latter Na₂B₄O₇ buffer.

Photophysics study: UV-Vis absorption spectra were recorded by using a Shimadzu UV-2101PC spectrophotometer. The steady-state luminescence spectra were recorded using the absorption maxima as excitation wavelength in a FS920CDT fluorimeter (Edinburgh Analytical Instruments). Fluorescence lifetime was measured by time-correlated single photon counting using a nF920 fluorimeter (Edinburgh Analytical Instruments). EPLED-330 (330 nm), EPLED-360 (360 nm) and EPL 405 (405 nm) were used as excitation source for guest:host complexes and free guests. All measurements were performed at room temperature (25°C). To the lifetime measurements, a monochromator was used to set a particular wavelength in despite of the total fluorescence. The fluorescence decay curves were analyzed using the software F900 (Analysis of Lifetime Data). A mono (Fit=A+B_1exp(-t/ τ_1)) and bi-exponential (Fit=A+B_1exp(-t/ τ_1)+B_2exp(-t/ τ_2)) approximations were used. A nonlinear least square method was employed to fit the decay to a sum of exponentials. The value of χ^2 and a

2

visual inspection of the residuals and the autocorrelation function were used to determine the quality of the fit. The quantum yield of fluorescence (Φ_{FL}) was calculated at 25°C using quinine sulfate (Riedel) in H₂SO₄ 0.5 M and coumarin-153 (Aldrich) in ethanol as standards.^{3,4}

2. Structure of the ionic species

3. Chemical structure and schematic representation of the host OA

Figure S27. Chemical structure and schematic representation of the host OA protons A-J used to examine the ¹H NMR spectra.

4. Titration Experiments

Figure S28. ¹H NMR spectra of (i) **HBT** in CDCl₃; (ii-v) **HBT** (60 mM DMSO-*d*₆ solution) in presence of OA at different guest:host (**1**:OA) molar ratio by fixing the host concentration and increasing the guest volume stepwise. (ii) 10.0 μ L, (iii) 7.5 μ L, (iv) 5.0 μ L, (v) 2.5 μ L and (v) 0.6 mL of 1 mM OA in 10 mM Na₂B₄O₇ D₂O solution.⁵ A-J represents the uncomplexed OA proton signals; a'-j' represent complexed OA proton signals, and * represents the guest proton signals.

Figure S29. ¹H NMR spectra of (i) **4AHBT** in DMSO-*d*₆; (ii-v) **4AHBT** (60 mM DMSO-*d*₆ solution) in presence of OA at different guest:host (**1**:OA) molar ratio by fixing the host concentration and increasing the guest volume stepwise. (ii) 10.0 μ L, (iii) 7.5 μ L, (iv) 5.0 μ L, (v) 2.5 μ L and (v) 0.6 mL of 1 mM OA in 10 mM Na₂B₄O₇ D₂O solution.⁶ A-J represents the uncomplexed OA proton signals; a'-j' represent complexed OA proton signals, and * represents the guest proton signals.

Figure S30. ¹H NMR spectra of (i) **5AHBT** in DMSO-*d*₆; (ii-v) **5AHBT** (60 mM DMSO-*d*₆ solution) in presence of OA at different guest:host (**1**:OA) molar ratio by fixing the host concentration and increasing the guest volume stepwise. (ii) 10.0 μ L, (iii) 7.5 μ L, (iv) 5.0 μ L, (v) 2.5 μ L and (v) 0.6 mL of 1 mM OA in 10 mM Na₂B₄O₇ D₂O solution.⁷ A-J represents the uncomplexed OA proton signals; a'-j' represent complexed OA proton signals, and * represents the guest proton signals.

5. Photophysical data

Table S4. Relevant data from the time resolved fluorescence spectroscopy from **HBT-4AHBT-5AHBT** and the respective inclusion complexes within OA, where λ_{em} is the analyzed emission wavelength, λ_{ex} is the excitation source in nanometers, B is the pre-exponential factor, τ is the fluorescence lifetime, *Rel.* is relative contribution and χ^2 is the chi-square of the fit.

Environment ^{a)}	λ _{ex} (nm)	λ _{em} (nm)	Α	B ₁	τ ₁ (ns)	Rel. %	B ₂	τ ₂ (ns)	Rel. %	χ²
HBT										
Ethanol -	330	507	6.886	678.971	3.204	100	-	-	-	1.106
	330	374	-1.235	66.586	2.717	100	-	-	-	1.108
DCM	330	530	3.085	88.536	2.579	100	-	-	-	1.096
Benzene	330	536	1.921	116.149	2.724	100	-	-	-	1.098
@(OA) ₂ -	330	451	37.069	2446.018	3.558	100	-	-	-	1.101
	330	529	34.027	4245.108	1.794	58.93	1086.122	4.887	41.07	1.118
4AHBT										
Ethanol	330	404	48.127	20819.852	1.768	100	-	-	-	1.127
DCM -	330	398	57.156	1067.650	1.519	100	-	-	-	1.114
	330	503	11.442	116.665	2.247	100	-	-	-	1.069
Benzene -	360	395	13.955	525.473	1.478	100	-	-	-	1.144
	360	509	44.903	247.551	2.230	100	-	-	-	1.198
@(OA) ₂ -	360	505	37.488	1954.279	2.165	100	-	-	-	1.146
	360	432	33.663	5516.392	2.345	100	-	-	-	1.119
5AHBT										
Ethanol	360	521	66.778	10530.253	3.134	100	-	-	-	1.110
DCM -	360	470	197.384	7023.738	2.585	13.37	15077.892	7.800	86.63	1.039
	360	624	43.436	274.445	2.950	100	-	-	-	1.118
Benzene -	360	467	32.627	2352.718	2.493	23.73	2463.696	7.650	76.27	1.102
	360	624	46.739	293.629	4.190	100	-	-	-	1.216
@(OA) ₂	405	619	17.118	410.521	2.783	100	-	-	-	1.116
		498	8.767	4391.830	2.913	70.00	862.577	6.357	30	1.104

^{a)} DCM=Dichloromethane

Fig. S31. Fit results of the HBT in ethanol @507 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S32. Fit results of the HBT in ethanol @374 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S33. Fit results of the HBT in benzene @536 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S34. Fit results of the HBT@ $(OA)_2$ @451 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S35. Fit results of the HBT@ $(OA)_2$ @529 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S36. Fit results of the HBT in dichloromethane @530 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S37. Fit results of the $4AHBT@(OA)_2$ @505 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S38. Fit results of the $4AHBT@(OA)_2$ @432 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S39. Fit results of the 4AHBT in dichloromethane @398 nm EPLED 330 nm (lef). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S40. Fit results of the 4AHBT in dichloromethane @503 nm EPLED 330 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S41. Fit results of the 4AHBT in ethanol @404 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S42. Fit results of the 4AHBT in benzene @395 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S43. Fit results of the 4AHBT in benzene @509 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S44. Fit results of the 5AHBT in benzene @467 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S45. Fit results of the 5AHBT@ $(OA)_2$ @467 nm EPL 405 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S46. Fit results of the 5AHBT@OA @498 nm EPL 405 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S47. Fit results of the 5AHBT in ethanol @521 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S48. Fit results of the 5AHBT in benzene @624 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S49. Fit results of the 5AHBT in dichloromthane @470 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

Fig. S50. Fit results of the 5AHBT in dichloromethane @624 nm EPLED 360 nm (left). Fluorescence decay curves and the residuals for single or double exponential function fits respectively for the same decay data points (right).

6. References

1. E. Ramasamy, N. Jayaraj, M. Porel, V. Ramamurthy, Excited state chemistry of capsular assemblies in aqueous solution and on silica surfaces, Langmuir 28 (2012) 10-16.

2. E. Barni, P. Savarino, M. Marzona, M. Piva, 2-(4-Alkylamido-2-hydroxyphenyl) benz-X-azoles as intermediates for the synthesis of dyes, Journal of Heterocyclic Chemistry 20 (1983) 1517-1521.

3. A. Chekalyuk, V. Fadeev, G. Georgiev, T. Kalkanjiev, Z. Nickolov, Determination of fluorescence quantum yields using a spontaneous Raman scattering line of the solvent as internal standard, Spectroscopy Letters 15 (1982) 355-365.

4. C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nature Protocols 8 (2013) 1535-1550.

5. R. Kulasekharan, N. Jayaraj, M. Porel, R. Choudhury, A.K. Sundaresan, A. Parthasarathy, M.F. Ottaviani, S. Jockusch, N.J. Turro, V. Ramamurthy, Guest rotations within a capsuleplex probed by NMR and EPR techniques, Langmuir 26 (2010) 6943-6953.

6. R. Kulasekharan, N. Jayaraj, M. Porel, R. Choudhury, A.K. Sundaresan, A. Parthasarathy, M.F. Ottaviani, S. Jockusch, N.J. Turro, V. Ramamurthy, Guest rotations within a capsuleplex probed by NMR and EPR techniques, Langmuir 26 (2010) 6943-6953.

7. R. Kulasekharan, N. Jayaraj, M. Porel, R. Choudhury, A.K. Sundaresan, A. Parthasarathy, M.F. Ottaviani, S. Jockusch, N.J. Turro, V. Ramamurthy, Guest rotations within a capsuleplex probed by NMR and EPR techniques, Langmuir 26 (2010) 6943-6953.