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Figure S1. The U-dependent of (a) in-plane lattice constants of FM and Neel-AFM monolayer 
CrSiTe3; (b) energy difference between FM and Neel-AFM monolayer CrSiTe3; (c) spin-up (blue) 
and spin-down (red) bandgaps of FM monolayer. 



Figure S2. The Raman spectra determined from first principles simulation both in bulk (a) and in 
monolayer (b) of CrSiTe3 are shown. Z(XX)-Z and Z(XY)-Z denote that the incident and scattering 
lights are in parallel and in perpendicular polarization configurations, respectively.
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Figure S3. The resistivity as a function of temperature for CrSiTe3 FET devices at Vbg = 0 V with 
various thicknesses denoted as  (a) 8.5 nm, (b) 20.0 nm, (c) 36 nm, and (d) 125 nm shows the clear 
change of resistivity which indicate the possible FM-AFM phase change at those temperatures. (e) 
The transition temperatures for different thickness of flakes show that transition temperature Tc generally 
increased as decreasing thickness.

Figure S4.  2×2 supercell of single-layer CrSiTe3 with (a) FM, (b) Neel, (c) strip, and (d) zigzag 
AFM spin textures. Only Cr atoms are shown. (e) and (f) show the energy differences of the AFM 
configurations with reference to the ground state FM one, which confirm the FM structure is the 
ground state.



The following is the detail of computing J1, J2, and J3.

Followed by the notation in Ref [6], we have the following energies for single-layer CrSiTe3 
with the FM order and the so-called Néel, zigzag, and stripy AFM order.
EFM  E0  (3J1  6J2 3J3)S2

ENEELAFM  E0  (3J1  6J2 3J3)S2

EZigzagAFM  E0  (J1  2J2 3J3)S2

EStripyAFM  E0  (J1  2J2 3J3)S2

Here, E0 is the energy of the spin-nonpolarzied configuration. Thus,
ENEELAFM EFM  (6J1  6J3)S2  0.1193eV
EZigzagAFM EFM  (2J1 8J2  6J3)S2  0.0337eV

EStripyAFM EFM  (4J1 8J2 )S2  0.0867eV
Therefore, J1, J2, and J3 as -2.39 meV, 0.00 meV, and +0.18 meV, respectively.


