Photoluminescent tuning of Ca₅(PO₄)₃Cl:Ce³⁺/Eu²⁺, Tb³⁺/Mn²⁺ phosphors: Structure refinement, site occupancy, energy transfer and thermal stability

Ying Tian,^a Yi Wei,^a Yun Zhao,^a Zewei Quan,^d Guogang Li,^{a,c,*} and Jun Lin^{b,*}

^{*a*} Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China

^b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)

^{*c*} State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China

^d Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, P. R. China

*Corresponding authors: J. Lin and G. G. Li E-mail address: jlin@ciac.ac.cn; ggli8312@gmail.com

Figure S1. (a) Experimental (black crosses) and calculated (red solid line) XRD patterns and their difference (blue solid line) for the Rietveld fit of CPOCI:0.10Ce³⁺ XRD pattern by the GSAS program. The short vertical lines show the positions of Bragg reflections of the calculated pattern.

 Table S1 Structure parameters of CPOCI:0.10Ce³⁺ derived from the GSAS

 refinement of XRD data.

Atom	Wyckoff position	Х	Y	Z		
Ca1/Eu	4 <i>f</i>	0.3333000(0	0.6667000(0)	0.0001000(0)		
Ca2/Eu 2	6 <i>h</i>	0.2350800(0	- 0.0099970(0)	0.2500000(0)		
P	6 <i>h</i>	0.4036710(0	0.3731130(0)	0.2500000(0)		
O1	6h	0.3344100(0	0.4842290(0)	0.2500000(0)		
02	6 <i>h</i>	0.5985850(0	0.4715580(0)	0.2500000(0		
03	12 <i>i</i>	0.3504860(0)	0.2696650(0)	0.0743480(0		
Cl	2b	0.0000000(0)	0.0000000(0)	0.0000000(0)		
Cell parameters: $a = b = 9.509$ Å, $c = 6.865$ Å; $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ};$						
$V = 537.60 \text{ Å}^3 \text{ and } Z = 2;$						
Space group: <i>P</i> 63/m (176);						
Reliability factor: $R_{wp} = 8.90\%$, $R_p = 5.16\%$ and $\chi^2 = 7.047$						

Bond	Length (Å)	Bond	Length (Å)
Cal/Cel-	2.4439(Ca2/Ce2-	2.76999
Ol	29)	O1	(3)
Ca1/Ce1-	2.4435(Ca2/Ce2-	2.41764
O1	29)	O2	(3)
Cal/Ce1-	2.4432(Ca2/Ce2-	2.61004
O1	29)	O3	(3)
Ca1/Ce1-	2.4382(Ca2/Ce2-	2.39620
O2	29)	O3	(3)
Ca1/Ce1-	2.4388(Ca2/Ce2-	2.39620
O2	29)	O3	(3)
Ca1/Ce1-	2.4383(Ca2/Ce2-	2.61004
O2	29)	O3	(2)
Ca1/Ce1-	2.8017(Ca2/Ce2-C	2.85736
O3	7)	11	(3)
Ca1/Ce1-	3.8008(Ca2/Ce2-C	2.85736
O3	7)	11	(3)
Ca1/Ce1- O3	2.8014(7)		
Average Ca1/Ce1- O	2.67	Average Ca2/Ce2- O/Cl	2.61

 Table S2 Selected interatomic distances in CPOCI:0.10Ce³⁺.

Figure S2. The XRD patterns of $Ca_5(PO_4)_3Cl:mCe^{3+}$ (m = 0.01, 0.03, 0.05, 0.10, 0.15), $Ca_5(PO_4)_3Cl:0.08Ce^{3+}, 0.05Tb^{3+}$, and $Ca_5(PO_4)_3Cl:0.08Ce^{3+}, 0.05Mn^{2+}$ samples. The standard $Ca_5(PO_4)_3Cl$ data (JCPDS #33-0271) is shown as a reference.

Figure S3. Decay curves of Ce³⁺ emission monitored at 320 nm (Excitation) and different emissions (396, 428, 458, 506 nm) for CPOCI:0.01Ce³⁺.

Figure S4. The PL spectra of CPOC1: xEu^{2+} (x = 0.5-5 mol%) samples.

Bond	Length (Å)	Bond	Length (Å)			
CPOCl:0.08Ce ³⁺						
Ca1_O1	2.43948(2)	Ca2_O1	2.79670(3)			
Ca1_O1	2.43913(2)	Ca2_O2	2.38548(3)			
Ca1_O1	2.43880(2)	Ca2_O3	2.56460(2)			
Ca1_O2	2.43888(2)	Ca2_O3	2.35468(3)			
Ca1_O2	2.43952(2)	Ca2_O3	2.35468(3)			
Ca1_O2	2.43899(2)	Ca2_O3	2.56460(2)			
Ca1_O3	2.81628(3)	Ca2_Cl1	2.90104(3)			
Ca1_O3	2.81536(3)	Ca2_Cl1	2.90104(3)			
Ca1_O3	2.81599(3)					
Average Ca1-O	2.56	Average Ca2-O/Cl	2.62			
CPOC1:0.08Ce ³⁺ , 0.05Mn ²⁺						
Cal_O1	2.37860(2)	Ca2_O1	2.84134(3)			
Cal_O1	2.37824(2)	Ca2_O2	2.41043(2)			
Cal_O1	2.37791(2)	Ca2_O3	2.58481(2)			
Ca1_O2	2.46873(2)	Ca2_O3	2.35194(2)			
Ca1_O2	2.46936(2)	Ca2_O3	2.35194(2)			
Ca1_O2	2.46883(2)	Ca2_O3	2.58481(2)			
Ca1_O3	2.83179(2)	Ca2_Cl1	2.91804(2)			

Table S3 Selected interatomic distances in CPOC1: $0.08Ce^{3+}$ and CPOC1: $0.08Ce^{3+}$, $0.05Mn^{2+}$ samples

Bond	Length (Å)	Bond	Length (Å)
Ca1_O3	2.83087(2)	Ca2_Cl1	2.91804(2)
Ca1_O3	2.83150(2)		
Average Ca1-O	2.56	Average Ca2-O/Cl	2.60

Figure S5. The Normalized Gaussian fitting PL spectra decomposed from 4*f* and 6*h* sites of (a) CPOC1: $0.02Eu^{2+}$ and (c) CPOC1: $0.10Ce^{3+}$ sample. The relative emission intensity of Gaussian fitting PL spectra decomposed from 4*f* and 6*h* sites of (c) CPOC1: $0.02Eu^{2+}$ and (d) CPOC1: $0.10Ce^{3+}$ sample with temperatures. The inserts in (c) and (d) are their CIE color coordinates at 25°C and 250°C.