Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Fig. S2. DLS investigations of the particles to determine the hydrodynamic diameters and size distributions of the silica core and silica@PSAN core-shell particles.

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table S1}. \mbox{ Comparison of average particle diameters obtained by TEM (d_{TEM}) and DLS (d_{DLS}) measurements for silica and silica@PSAN particles. \end{array}$

Sample ^{a)}	d _{TEM} ^{a)}	d _{DLS} ^{b)}
	[nm]	[nm]
silica	169 ± 5	172 ± 18
silica@PSAN	-	222 ± 24

^{a)}Average particle diameter and standard deviation were determined by taken the mean for at least 200 particles out of the TEM images; ^{b)}Average sphere diameter and standard deviation were determined at the maximum of the logarithmic probability density of the particle size distribution.

Fig. S3. XPS survey spectra of the precursor materials: (i) original melt-sheared particle film without thermal treatment (bottom), (ii) particle film after thermal treatment at 240 °C and etching (middle), (iii) particle films after thermal treatment at 400 °C (top), and particle film after thermal treatment at 1200 °C.

Fig. S4. The evolution of the N1s photoelectron spectrum as a function of thermal treatment of the precursor materials: (i) original melt-sheared particle film without thermal treatment (bottom), (ii) particle film after thermal treatment at 240 °C and etching (middle), (iii) particle films after thermal treatment at 400 °C (top), and particle film after thermal treatment at 1200 °C.

Fig. S5. The evolution of the C1s photoelectron spectrum of the precursor materials: (i) original melt-sheared particle film without thermal treatment (bottom), (ii) particle film after thermal treatment at 240 °C and etching (middle), (iii) particle films after thermal treatment at 400 °C (top), and particle film after thermal treatment at 240 °C (top).

Fig. S6. The evolution of the O1s photoelectron spectrum of the precursor materials: (i) original melt-sheared particle film without thermal treatment (bottom), (ii) particle film after thermal treatment at 240 °C and etching (middle), (iii) particle films after thermal treatment at 400 °C (top), and particle film after thermal treatment at 1200 °C.

Fig. 57. (5 x 5) μ m² topography (top row) and current maps (bottom row) on a melt-shear organized particle film thermally treated at 1500 °C at different sample potentials as obtained by using conductive AFM measurements.

Fig. S8. High-resolution (1 x 1) µm² topography (top row) and current maps (bottom row) on a melt-shear organized particle film thermally treated at 1500 °C at different sample potentials at a different sample position as obtained by using conductive AFM measurements.