Supporting Information

Development of Strongly Absorbing *S,N*-Heterohexacene-Based Donor Materials for Efficient Vacuum-Processed Organic Solar Cells

Christoph Wetzel,^a Amaresh Mishra,^a Elena Mena-Osteritz,^a Karsten Walzer,^b Martin Pfeiffer,^b Peter Bäuerle^a*

^{*a*}Institute of Organic Chemistry II and Advanced Materials University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany E-mail: peter.baeuerle@uni-ulm.de

^bHeliatek GmbH, Treidlerstrasse 3, 01139 Dresden, Germany

Content

¹ H- and ¹³ C-NMR spectra of SN6 derivatives 7-11:	2
¹ H- and ¹³ C-NMR spectra of dialdehydes 12-16:	7
¹ H-NMR spectra of DCV end-capped SN6 derivatives 1-5:	12

¹H- and ¹³C-NMR spectra of SN6 derivatives 7-11:

Figure 1. ¹H-NMR spectrum of SN6-Hept 11 in [D8]THF (400 MHz); *solvent impurities.

Figure 2. ¹³C-NMR spectrum of SN6-Hept 11 in [D8]THF (100 MHz).

Figure 3. ¹H-NMR spectrum of SN6-Hex 10 in [D8]THF (400 MHz); *solvent impurities.

Figure 4. ¹³C-NMR spectrum of SN6-Hex 10 in [D8]THF (100 MHz).

Figure 5. ¹H-NMR spectrum of SN6-Pen 9 in [D8]THF (400 MHz); *solvent impurities.

Figure 6. ¹³C-NMR spectrum of SN6-Pen 9 in [D8]THF (100 MHz).

Figure 7. ¹H-NMR spectrum of SN6-Bu 8 in [D8]THF (400 MHz); *solvent impurities.

Figure 8. ¹H-NMR spectrum of SN6-Bu 8 in [D8]THF (100 MHz).

Figure 9. ¹H-NMR spectrum of SN6-Pr 7 in [D8]THF (400 MHz); *solvent imurities.

Figure 10. ¹³C-NMR spectrum of SN6-Pr 7 in [D8]THF (100 MHz).

¹H- and ¹³C-NMR spectra of dialdehydes 12-16:

Figure 11. ¹H-NMR spectrum of CHO-SN6-Hept 16 in [D2]TCE (400 MHz); *solvent impurities.

Figure 12. ¹³C-NMR spectrum of CHO-SN6-Hept 16 in [D2]TCE (100 MHz).

Figure 13. ¹H-NMR spectrum of CHO-SN6-Hex 15 in [D2]TCE (500 MHz).

Figure 14. ¹³C-NMR spectrum of CHO-SN6-Hex 15 in [D2]TCE (125 MHz).

Figure 15. ¹H-NMR spectrum of CHO-SN6-Pen 14 in [D2]TCE (500 MHz).

Figure 16. ¹³C-NMR spectrum of CHO-SN6-Pen 14 in [D2]TCE (125 MHz).

Figure 17. ¹H-NMR spectrum of CHO-SN6-Bu 13 in [D2]TCE (500 MHz); *solvent impurities.

Figure 18. ¹³C-NMR spectrum of CHO-SN6-Bu 13 in [D2]TCE (125 MHz).

Figure 19. ¹H-NMR spectrum of CHO-SN6-Pr 12 in [D2]TCE (400 MHz); *solvent impurities.

¹H-NMR spectra of DCV end-capped SN6 derivatives 1-5:

Figure 20. ¹H-NMR spectrum of DCV-SN6-Hept 5 in [D2]TCE (500 MHz).

Figure 21. ¹H-NMR spectrum of DCV-SN6-Hex 4 in [D2]TCE (500 MHz); *solvent impurities.

Figure 22. ¹H-NMR spectrum of DCV-SN6-Pen 3 in [D2]TCE (500 MHz); *solvent impurities.

Figure 23. ¹H-NMR spectrum of DCV-SN6-Bu 2 in [D2]TCE (500 MHz); *solvent impurities.