Electronic Supplementary Information (ESI)

Decoration of nanocarbon supports with magnetite nanoparticles: application to microwave-responsive metamaterials

Francisco Mederos-Henry^a, Benoît P. Pichon^b, Yzaora Tchuitio Yagang^a, Arnaud Delcorte^c, Christian Bailly^c, Isabelle Huynen^{*d} and Sophie Hermans^{*a}

^{b.} Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS-UdS 7504, 23 rue du Loess – BP 43, 67034 Strasbourg Cedex 2, France.

^{c.} Institute of Condensed Matter and Nanosciences (IMCN), Division of Bio and Soft Matter (BSMA), Croix du Sud 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

^{d.} Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Place du Levant 3, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. E-mail : isabelle.huynen@uclouvain.be

1. Reactants specifications

Nanocarbon supports

Name	Specification	Company	Country
Multi-walled carbon nanotubes (MWCNTs)	NC3100	Nanocyl	Belgium
Graphene oxide (GO)	-	Nanoinnova	
Reduced graphene oxide (rGO)		Technologies	Spain
	-	SL	
Graphene nanoplatelets (GNPs)	TIMREX BNB90	TIMCAL	Switzerland

Other reactants

Name	Specification	Company	Country
(3-aminopropyl)trimethoxysilane	97%		Germany
Iron (III) acetylacetonate	97%		
Iron (III) chloride hexahydrate	puriss. p.a., Reag. Ph. Eur., ≥99%	Sigma-Aldrich	
Thionyl chloride	ReagentPlus [®] , ≥99%		
Triethylene glycol	ReagentPlus [®] , ≥99%		
Etyhlene glycol	Spectrophotometric grade, 99+%		Germany
Hydrazine monohydrate	99+%	_	
Iron (II) chloride tetrahydrate	Reagent grade, 99%	Alfa Aesar	
Polyethylene glycol 2000	-	Alla Aesal	
Tetraethoxysilane	99.9%		
Tetramethylammonium hydroxide	25% w/w aq. soln., 99.9999%		
Polyethylene glycol 400	Synthesis grade	Merck	Germany
Ethanol	Technisolv		
Hydrochloric acid	AnalaR NORMAPUR		
Nitric acid	65%, AnalaR NORMAPUR VWR		Belgium
Sodium Hydroxide	AnalaR NORMAPUR		
Toluene	AnalaR NORMAPUR		

^{a.} Institute of Condensed Matter and Nanosciences (IMCN), Division of Molecules, Solids and Reactivity (MOST), Place Louis Pasteur 1, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. E-mail : Sophie.Hermans@uclouvain.be.

2. Covalent linkage of functionalized core-shell nanoparticles and graphene oxide acyl chloride derivative (COV).

The nature of the linkage existing between the graphenic surface and the silica-coated MaNPs in a COV nanocomposite was characterized by XPS. As can be observed in Figure 1, the N_{1s} photopeak can be fitted with two components located at binding energies of 402 eV and 399 eV which are attributable to an (C=O)-<u>N</u>H-C amide bond [1] or to an amine's <u>N</u>-H₂ [2], respectively. Furthermore, according to this analysis, the amide component is more abundant, given that its contribution to the N_{1s} peak area is approximately 74%.

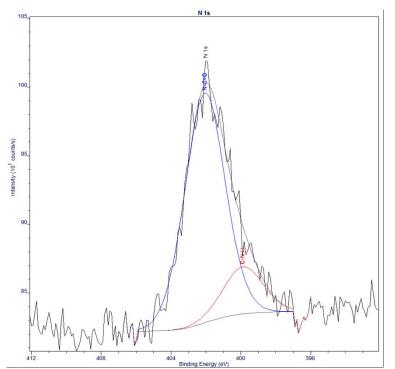


Figure S1- XPS spectra (N1s peak) of a COV product. The peak can be fitted with two components attributable to an (C=O)- \underline{N} H-C amide bond (blue) or to an amine's \underline{N} -H₂ (red).

The formation of the amide bond was also detected when fitting the nanocomposites' C_{1s} peak (see Figure 2). Before the reaction, GO's C_{1s} peak is fitted with five components: Carom, C-(C,H), C-O, C=O/O-C-O and (C=O)-OH. On the other hand, when analysing the COV nanocomposite, an additional component attributable to an (C=O)-NH-C amide bond is required in order to fit the peak shoulder located around 288 eV [3].

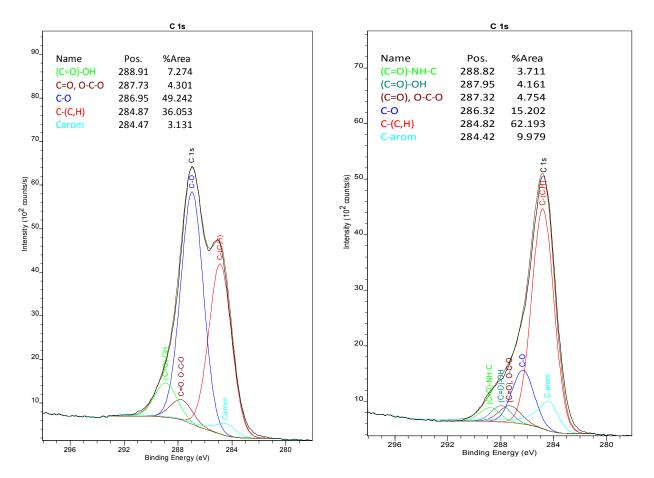


Figure S2 XPS spectra of GO (left) and the COV nanocomposite product (right).

3. TEM images of tethered core-shell nanoparticles

TEM inspection of the M@Si product, prior to its functionalization and covalent linkage to an acyl-modified GO support, proves that magnetite nanoparticles have been effectively covered with a thin silica layer.

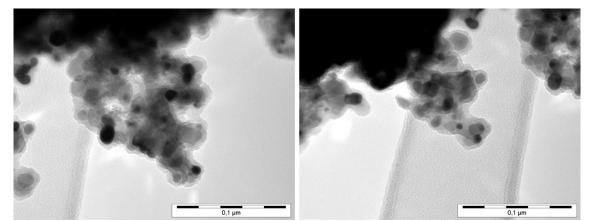
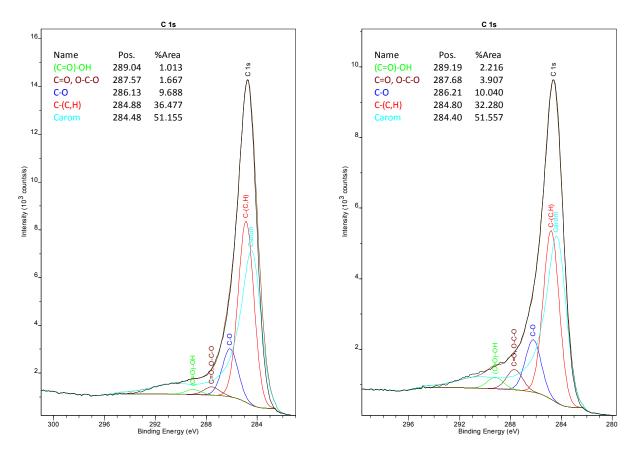



Figure S3 – TEM images of the M@Si core-shell nanoparticles. Darker magnetite nanoparticles of different sizes and morphologies can be observed, surrounded by a light-grey thin shell of silica.

4. Oxygenated functions abundance in the different graphenic supports as determined by XPS.

XPS was performed on the different starting nanocarbon supports. The C_{1s} peak was fitted using aromatic (C-arom), alkyl (<u>C</u>-(C,H)), alcohol (<u>C</u>-O), carbonyl/ether (<u>C</u>=O, O-<u>C</u>-O) and acyl ((<u>C</u>=O)-OH) components. The quantification of the different components' contribution to the C_{1s} peak area indicate that the total amount of oxygenated functions decreases in the order: GO>rGO>GNPs (see Figure 3).

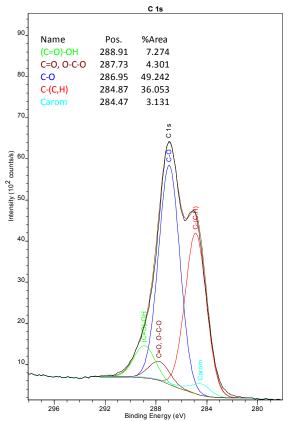


Figure S3 XPS spectra for the C1s peak of a) GNPs (top, left); b) rGO (top, right) and c) GO (bottom, left).

5. TGA analysis of a series of samples synthesized by the SOLV-A method.

SOLV-A method was used to produce 750 mg of a MaNPs@GNPs (50% intended Fe/GNPs loading rate (LR)). The used autoclave vessel capacity is limited to 250 mL, thus being insufficient to synthetize this amount in a single experiment. The nanocomposite was therefore produced in 3 separate batches. TGA analyses performed on each batch show that the amount of loaded MaNPs is extremely similar from one batch to the other.

MaNPs@GNPs (Timcal) LR (% w/w) as determined by TGA					
	B1	B2	B3		
%Fe (% w/w)	29.1	29.3	28.7		

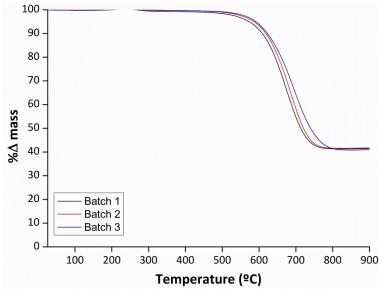


Figure S4 Thermograms for the thermal decomposition under air of the different MaNPs@GNPs batches produced with the SOLV-A technique.

5. References

- 1. D.N. Hendrickson, J.M. Hollander and W.L. Jolly, *Inorg. Chem.*, 1969, **8**(12), 2642-2647.
- 2. E.T. Kang, K.G. Neoh, X. Zhang, K.L. Tan and D.J. Liaw, Surf. Interface Anal., 1996, 24, 51-58.
- 3. P.G. Rouxhet and M.J. Genet, Surf. Interface Anal., 2011, 43, 1453-1470.