Supporting Information

Novel pyrene containing monomeric and dimeric supramolecular AIEE active nano-probes utilized in selective "off-on" trivalent metal and

highly acidic pH sensing with live cell applications

Muthaiah Shellaiah,^a Turibius Simon,^b Venkatesan Srinivasadesikan,^c Chein-Min Lin,^d Kien

Wen $\operatorname{Sun}^{a,d^*}_{,}$ Fu-Hsiang Ko,^b Ming-Chang Lin^c and Hong-Cheu Lin^b

*aDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu 300,

Taiwan.

^bDepartment of Materials Science and Engineering, National Chiao Tung University,

Hsinchu 300, Taiwan.

^CCenter for Interdisciplinary Molecular Science, Department of Applied Chemistry,

National Chiao Tung University, Hsinchu 300, Taiwan.

^dDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.

**E-mail: kwsun@mail.nctu.edu.tw*

Table of contents:

¹H NMR, ¹³C NMR and Mass [ESI (+Ve)] spectra of PCS1-PCS2 (S2-S9)

TRPL spectra of PCS2 and PCS2+HCl (1M) (S10)

Quentum yield (Φ_f) changes and DLS analysis of AIEE of PCS1 and PCS2 (S11-S13)

Histograms of PCS1----M³⁺ (M=Fe/Cr/Al) in presence of different metal ions (S14)

UV-Vis/PL titrations and Stoichiometry of PCS1---Cr³⁺ and PCS1---Al³⁺ (S15-S17)

FTIR and ESI (+Ve) mass spectra of PCS1--- M^{3+} (M = Fe/ Cr/ Al) sensor complexes (S18-S21)

Sensor reversibilities and proposed excimer formation of PE--- M^{3+} (M = Fe/ Cr/ Al) (S22-S25)

Association constants and Detection limits of PCS1--- M^{3+} (M = Fe/ Cr/ Al) (S26-S27)

TEM images of PCS1--- M^{3+} (M = Fe/ Cr / Al) (S28)

pH effect on PE---M³⁺ (M = Fe/ Cr/ Al) and TRPL spectra of PCS1, PCS1---Cr³⁺ and PCS1---Al³⁺ (S29-S30)

Frontier Molecular Orbital diagrams of PCS1 and PCS2 (S31-S32)

Bond distances and PET optimization of PCS1---M³⁺ (M = Fe/ Cr/ Al) (S33-S36)

pH sensor responses of PCS1 and PCS2 (S37-S38)

Proposed PET base mechanism and Cell images for pH sensors of PCS1 and PCS2 (S39-S40)

TEM images of PCS1 and PCS2 at pH = 3 (S41)

TRPL data Table S1 (S42)

Fig. S1 ¹H NMR spectrum of PCS1 in CDCl₃.

Fig. S2 ¹³C NMR spectrum of PCS1 in CDCl₃.

Fig. S3 ESI (+Ve) Mass spectrum of PCS1.

Fig. S4 ¹H NMR spectrum of PCS2 in d₆-DMSO.

Fig. S5 ¹³C NMR spectrum of **PCS2** in d₆-DMSO.

Fig. S6 ESI (+Ve) Mass spectrum of PCS2.

Fig. S7 ESI (+Ve) Mass spectrum of PCS1 in 1M NaOH solution.

Fig. S8 ESI (+Ve) Mass spectrum of PCS2 + HCl (100 μ l; 1M) complex.

Fig. S9 TRPL spectra of PCS2 and PCS2 + HCl (20 μ l; 1M) in DMSO solution.

Fig. S10 Quantum yield (Φ_f) changes of (a) PCS1 and (b) PCS2, upon increasing the concentration of water fraction (0-90%) as a function of time (0-12 hours).

Fig. S11 Dynamic light scattering (DLS) data of (a) PCS1 in CH_3CN and (b) PCS1 in CH_3CN with 80% of water fraction.

Fig. S12 Dynamic light scattering (DLS) data of (a) **PCS2** in DMSO and (b) **PCS2** in DMSO with 60% of water fraction.

Fig. S13 (a-c) Histograms of PCS---M³⁺ (20 μ M of M= Fe/ Cr/ Al) in presence of different metal ions (20 μ M).

Fig. S14 (a) UV-Vis and (b) PL spectral titrations of PCS1 (20 μ M in CH₃CN) with 0-40 μ M and 0-20 μ M of Cr³⁺ ions in H₂O, respectively; PL Inset: Intensity changes as a function of Cr³⁺ concentration.

Fig. S15 (a) UV-Vis and (b) PL spectral titrations of PCS1 (20 μ M in CH₃CN) with 0-40 μ M and 0-20 μ M of Al³⁺ ions in H₂O, respectively; PL Inset: Intensity changes as a function of Al³⁺ concentration.

Fig. S16 (a, b) Job's plots (based on PL intensity changes) between X vs $(I-I_0)^*X$, representing 2:1 [PCS1---Cr³⁺ (0.621) and PCS1---Al³⁺ (X = 0.628)] complexes.

Fig. S17 FTIR spectrum of PCS1--- M^{3+} (1:1 and 2:1 complexes) confirms 2:1 stoichiometry of PCS1--- M^{3+} (M = Fe/ Cr/ Al) sensor complexes via excimer formation.

Fig. S18 ESI (+Ve) Mass spectrum of **PCS1---**Fe³⁺ sensor complex, representing 2:1 complex formation.

Fig. S19 ESI (+Ve) Mass spectrum of **PCS1---**Cr³⁺ sensor complex, representing 2:1 complex formation.

Fig. S20 ESI (+Ve) Mass spectrum of **PCS1---**Al³⁺ sensor complex, representing 2:1 complex formation.

Fig. S21 (a) Sensor reversibility of PCS1---F e^{3+} with PMDTA (b) Reversible cycles with PMDTA.

Fig. S22 (a) Sensor reversibility of PCS1---Cr³⁺ with PMDTA (b) Reversible cycles with PMDTA.

Fig. S23 (a) Sensor reversibility of **PCS1---**Al³⁺ with PMDTA (b) Reversible cycles with PMDTA.

Fig. S24 Schematic illustration of **PCS1---** M^{3+} (M = Fe/ Cr/ Al) induced excimer (**PCS1-PCS1**^{*}) formation for sensor selectivity and its reversibility with PMDTA.

Fig. S25 Association constant calculations by plotting $\alpha^2/(1-\alpha)$ vs $1/M^{3+}$ (M = Fe/ Cr / Al) with linear fitting as well to find out the binding constant of (a) **PCS1---**Fe³⁺ (b) **PCS1---**Cr³⁺ (c) **PCS1---**Al³⁺; where α = F-F0/F1-F0, F = PL intensity at 515 nm at any given concentration of M³⁺, F0 = PL maxima in presence of M³⁺, and F1 = PL maxima in the absence of M³⁺.

Fig. S26 Standard deviation and linear fitting calculations for detection limits of (a) PCS1---Cr³⁺
(b) PCS1---Al³⁺ based on PL intensity changes at 515 nm.

Fig. S27 TEM images of (a) **PCS1** (b) **PCS1**---Fe³⁺ (c) **PCS1**---Cr³⁺ (d) **PCS1**---Al³⁺.

Fig. S28 pH effect on PCS1 and PCS1--- M^{3+} (M = Fe/ Cr/ Al) sensor system.

Fig. S29 TRPL spectra of (a) PCS1 and PCS1---Cr³⁺; (b) PCS1 and PCS1---Al³⁺.

Fig. S30 Frontier Molecular Orbital diagram of PCS1 in gas phase at B3LYP/LANL2DZ level.

Fig. S31 Frontier Molecular Orbital diagram of PCS2 in gas phase at B3LYP/LANL2DZ level.

Fig. S32 The bond distances (Å) between M^{3+} ---O and M^{3+} ---N of PCS1--- M^{3+} complexes shown in schematic representation of optimized sensor complexes (M = Fe/ Cr/ Al).

Fig. S33 Frontier Molecular Orbital diagram of $[PCS1---Fe]^+$ in gas phase at B3LYP/LANL2DZ level (Note: PCS1---Fe $-\beta$ PET Unrestricted).

Fig. S34 Frontier Molecular Orbital diagram of $[PCS1---Cr]^+$ in gas phase at B3LYP/LANL2DZ level (Note: PCS1---Cr- β PET Unrestricted).

Fig. S35 Frontier Molecular Orbital diagram of [**PCS1---**Al]⁺ in gas phase at B3LYP/LANL2DZ level.

Fig. S36 (a) PL spectra of **PCS1** (950 μ L; 20 μ M in CH₃CN) with 50 μ L of pH (1-14; 1 M) solution; (b) Bar graph of **PCS1** with respective pH solutions; Inset: Acidic pH sensor responses of **PCS1** visualized under UV-irradiations ($\lambda = 365$ nm).

Fig. S37 (a) PL spectra of **PCS2** (950 μ L; 20 μ M in CH₃CN) with 50 μ L of pH (1-14; 1 M) solution; (b) Bar graph of **PCS2** with respective pH solutions; Inset: Acidic pH sensor responses of **PCS2** visualized under UV-irradiations ($\lambda = 365$ nm).

Fig. S38 Possible PET based proposed mechanism for highly acidic pH sensing of PCS1 and PCS2.

Fig. S39 Fluorescence images of Raw264.7 cells treated with PCS1 and PCS2 at pH 3 (incubated for 50 minutes). Bright Field image (Left); Fluorescence image (middle); Merged image (right). The scale bar is 50μ M.

Fig. S40 TEM images of (a) PCS1 at pH = 3.0 and (b) PCS2 at pH = 3.0.

Compound	$\tau_1(ns)$	$\tau_2(ns)$	A ₁ (%)	A ₂ (%)	$ au_{Avg}(ns)$
PCS1 (0%)	9.855	0.3784	60.43	39.57	3.105
PCS1 Fe ³⁺	21.89	1.7514	19.82	80.18	5.74
PCS1 Cr ³⁺	17.87	1.62	18.71	81.29	4.96
PCS1 Al ³⁺	8.29	1.9424	18.44	81.56	4.66
PCS1 (80%)	12.778	2.0132	26.01	73.99	4.813
PCS2 (0%)	3.742	0.2497	31.36	68.64	1.345
PCS2 (60%)	4.614	1.0915	21.70	78.30	1.856
PCS2+HCl	3.72	0.5489	5.43	94.57	0.72

 Table S1. Time-resolved fluorescence decay constants of PCS1 and PCS2, sensor complexes and

 their aggregation induced emissions concentrations.