Electronic Supplementary Information (ESI)

Organic-Inorganic Hybrid Electron Transport Interlayer for High-Performance Inverted Polymer Solar Cells

Eui Jin Lee[†], Soo Won Heo[‡], Yong Woon Han[†] and Doo Kyung Moon^{†*}

[†]Department of Materials Chemistry and Engineering, Konkuk University, 1 Hwayang-dong,

Gwangjin-gu, Seoul 143-701, Republic of Korea

[‡] RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa, Wako , Saitama 351-

0198 , Japan

Corresponding Author

*E-mail : dkmoon@konkuk.ac.kr. Phone : +82 02 450 3498

Contents

- Fig. S1. X-ray diffraction patterns of ZnO and ZnO-PFN interlayers.
- Fig. S2. AFM phase images (a) ZnO/PTB7:PCBM and (b) ZnO-PFN/PTB7:PCBM
- Fig. S3. *J-V* characteristics of the electron-only devices (a) ITO/ZnO or ZnO-PFN/Al, and (b) ITO/ZnO or ZnO-PFN/PTB7: PCBM /Al.
- Fig. S4. Open circuit voltage (Voc), current density (Jsc), fill factor (FF), power conversion efficiency (PCE) variation of 10 samples of ITO/ ZnO-PFN/PTB7: PCBM /MoO₃/Ag.
- Fig. S5. J-V characteristics of inverted devices with various PFN concentrations
- Table. S1. Electron mobility of the interlayers and photoactive layer determined using the electron-only devices ITO/ZnO or ZnO-PFN/Al and ITO/ZnO or ZnO-PFN/PTB7:PCBM/Al along with the use of space charge current equation in the calculation.
- Table. S2. Photovoltaic performances of inverted PSCs with various PFN concentrations

Fig. S1 X-ray diffraction patterns of ZnO and ZnO-PFN interlayers.

(b)

Fig. S2. AFM phase images (a) ZnO/PTB7:PCBM and (b) ZnO-PFN/PTB7:PCBM

Fig. S3 *J-V* characteristics of the electron-only devices (a) ITO/ZnO or ZnO-PFN/Al, and (b) ITO/ZnO or ZnO-PFN/PTB7: PCBM /Al.

Fig. S4 Open circuit voltage (Voc), current density (Jsc), fill factor (FF), power conversion efficiency (PCE) variation of 10 samples of ITO/ ZnO-PFN/PTB7: PCBM /MoO₃/Ag.

Fig. S5. J-V characteristics of inverted devices with various PFN concentrations

Table S1. Electron mobility of photoactive layer determined using the electrononly devices ITO/ZnO or ZnO-PFN/PTB7:PCBM/Al along with the use of space charge current equation in the calculation.

Devices	ITO/ZnO/	ITO/ZnO-PFN/	
	PTB7:PCBM/AI	PTB7:PCBM/AI	
μ_e [cm ² /v·s]	1.71 x 10 ⁻⁴	6.60 x 10 ⁻⁴	

Table. S2. Photovoltaic performances of inverted PSCs with various PFN concentrations

Cathode	PFN	Jsc	Voc	FF	PCE
	concentration	[mA/cm ²]	[V]	[%]	[%]
ITO/ZnO	-	16.3	0.717	61.7	7.2
ITO/PFN	2 mg/ml	17.4	0.717	50.5	6.3
ITO/ZnO-PFN	0.5 mg/ml	17.7	0.737	64.5	8.4
ITO/ZnO-PFN	1 mg/ml	18.3	0.737	67.8	9.2
ITO/ZnO-PFN	2 mg/ml	17.4	0.717	63.4	7.9