Supporting Information for

Flexible and Robust Hybrid Paper with Large Piezoelectric Coefficient

Suresha K. Mahadeva^{1*}, Konrad Walus¹, and Boris Stoeber^{1, 2}

¹Department of Electrical and Computer Engineering, The University of British Columbia

2332 Main Mall, Vancouver, BC V6T 1Z4, Canada

²Department of Mechanical Engineering, The University of British Columbia

2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada

*Email: sure1977@mail.ubc.ca, suresha_km@hotmail.com

Figure S1. Current-Voltage (I-V) sweep curve of the piezoelectric paper, the voltage V was scanned between -0.5 V and +0.5 V and the resulting *dc* current *I* was measured using a source meter (Keithley 2635A). The electrical conductivity

$$\sigma_{S} = \frac{\Delta I}{\Delta V} \frac{L}{A}$$

was then calculated using the slope of the current versus voltage curve $\Delta I/\Delta V$, the thickness L = 0.011 cm, and the area A = 1 cm² of the sample, to yield $\sigma_{\rm S} = 9.19 \times 10^{-7}$ S/cm.

(5) Hot Lamination Using Office Laminator and wiring

Figure S2. Step-by-step process showing a novel process for fabricating paper based accelerometer.

Figure S3: Compared TEM images of $BaTiO_3$ functionalized wood fiber before (a) and after (b) activating in CMC suspension, wood fibers appears larger than that of their counterparts due to coverage of CMC.

Figure S4. Stress-strain curves of hybrid paper as a function of CMC concentration.

Figure S5. Piezoelectric response of hybrid paper aged for 14 months.

Figure S6. Force-displacement curve of paper laminate subjected to compression load using *Bose Electro force*.

Figure S7. Compared output signal measured from commercial reference accelerometer; ADXL203 EB by Analog Devices (left), and paper accelerometer (right) at 30 Hz and 0.18 g acceleration amplitude. Note that output signal recorded from the paper accelerometer is similar and matches with a reference accelerometer.

Estimated Cost for Preparing \$11 cm Hybrid Piezoelectric Paper

|--|

Material	Quantity	Rate	Cost
	Required		
Pulp	2 g	\$1/kg	\$0.002
NaCl	9 g	\$10.5/kg	\$0.095
PSS	1 g	\$51.4/100g	\$0.51
PDDA	2 g	\$41.7/kg	\$0.08
BaTiO ₃ NPs	2.52 g	\$263/kg	\$0.66
NaCMC	0.5 g	\$111/kg	\$0.056
		\$1.4	

NaCl- sodium chloride, PSS- poly(sodium 4-styrenesulfonate), PDDA- poly(diallyldimethylammonium chloride), NaCMC- sodium carboxymethylcellulose, BaTiO₃ NPs- barium titanate nanoparticles

Electric Charges for Poling

Electric energy required for Poling

= Oven + Voltage source = 9.6 kWh + 0.12 kWh = 9.72 kWh

Electric tariff = \$0.59/h

Electric Charges for Poling = $9.72 \times \$0.59 = \5.74

Cost for Preparing \$\$\phi1\$ cm Hybrid Piezoelectric Paper = \$1.4 + \$5.74 = \$7.14

Paper Accelerometer Model

Z, and $Z_m \rightarrow$ displacement of shaker table and seismic mass respectively

Free-body diagram of seismic mass

 $a = \ddot{Z} = -\omega Z$ $F_k = m\ddot{Z}_m$ $F_k = k(Z - Z_m)$

harmonics:

 $Z_m = \hat{Z}_m \omega_s \omega_t$

$$Z_m = -\omega^2 Z_m \cos \omega t = -\omega^2 Z_m$$

$$F_m = m Z_m = -m\omega^2 Z_m = k(Z - Z_m)$$

$$Z_m = \frac{k}{k - m\omega^2} Z = \frac{Z}{1 - (\omega/\omega_0)^2} \quad \text{with} \quad \omega_0 = \sqrt{k/m}$$

$$Q = D_3 A_3 = d_{33} \bigcup_{\omega}^{A_3 \sigma_3} = d_{33} m(-\omega^2) Z_m$$

$$F_3 = F_m$$

$$Q = \frac{d_{33}m}{1 - (\frac{\omega}{\omega_0})^2} (-\omega^2) Z = \frac{d_{33}m}{1 - (\frac{\omega}{\omega_0})^2}$$

$$\frac{Q}{a} = \frac{d_{33}m}{1 - \left(\frac{\omega}{\omega_0}\right)^2}$$
$$f_0 = \frac{1}{2\pi}\sqrt{k/m}$$