Supporting Information:

'Ferroelectric' Metals Reexamined: Fundamental Mechanisms and Design Considerations for New Materials

Nicole A. Benedek*, *,† and Turan Birol ‡

†Department of Materials Science and Engineering, Cornell University, Ithaca, New York

14853 USA

[‡]Department of Physics and Astronomy, Rutgers University, New Jersey 08854 USA

E-mail: nbenedek@cornell.edu

Table 1: Comparison between calculated and experimental structural parameters of $R\bar{3}c$ LiOsO₃ in the hexagonal setting. The calculated lattice parameters are a = 5.1091 Å and c = 13.0175 Å, compared with the experimental lattice parameters a = 5.0638 Å and c = 13.2110 Å. The calculated rotation angle for the OsO₆ octahedra is 23.9°, compared with an experimental value of 24.2°. Experimental data are from Shi, *et al Nature Materials* **12** 1024 (2013).

Atom	Wyckoff site	Theory			Expe	Experiment		
		x	y	z	x	y	z	
Li	6a	0	0	0.25	0	0	0.25	
Os	6b	0	0	0	0	0	0	
Ο	18e	0.6277	0	0.25	0.6298	0	0.25	

Table 2: Comparison between calculated and experimental structural parameters of R3c LiOsO₃ in the hexagonal setting. The calculated lattice parameters are a = 5.0421 Å and c = 13.2470 Å, compared with the experimental lattice parameters a = 5.0456 Å and c = 13.2390 Å. Experimental reference as above.

Atom	Wyckoff site		Theory		Experiment			
		x	y	z	x	y	2	
Li	6a	0	0	0.2199	0	0	0.2147	
Os	6a	0	0	0.0057	0	0	0	
0	18b	0.6701	-0.0311	0.2582	0.6260	-0.0102	0.2525	