Supporting Information

CuInS₂/ZnS Quantum Dot-Embedded Polymer Nanofibers for Color Conversion Films

By Namhun Kim[§], Wonkyung Na[§], Wenping Yin, Tae Kyu Ahn, Sung Min Cho, and Heeyeop Chae^{*}

Namhun Kim, Wonkyung Na, Prof. Sung Min Cho, and Prof. Heeyeop Chae School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea

*E-mail: hchae@skku.edu

Prof. Heeyeop Chae

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU),

Suwon, Gyeonggi-do 440-746, Republic of Korea

Wenping Yin, Prof. Tae Kyu Ahn

Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea

[§] This author equally contributed this work

Materials. Copper iodide (CuI, 99.999%), indium acetate (In(Ac)₃, 99.99%), 1-dodecanethiol (DDT, 98%), Zn acetate, 1-octadecene (ODE, 90%), oleic acid (OA, and polystyrene (PS,) are purchased from Sigma-Aldrich Inc. All reagents used in this study were purchased at anlytical reagent grade and used for synthesis without further purification.

Photoluminescence Quantum Yield (PL QY) Measurement. PL QY at room temperature were determined by comparing the integrated emission of the QDs in solution with the emission intensity of a reference, Rhodamine 6G, in ethanol (95% of QY) at an optical density of 0.1.¹ QYs were calculated from the following equation

$$QY = QY_R \left(\frac{I}{I_R}\right) \left(\frac{OD_R}{OD}\right) \left(\frac{n^2}{n_R^2}\right)$$
(1)

,where *I* and I_R are the integrated fluorescence intensities, OD_R and OD are the optical densities at the 450 nm excitation wavelength, and *n* and n_R are the refractive index of solvent.

Figure S1. N. Kim et al.

Reference

1. M. Fischer, J. Georges, *Chem. Phys. Lett.*, 1996, **260**, 115-118.