Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting information

Light-Blue Thermally Activated Delayed Fluorescent Emitters Realizing a High External Quantum Efficiency of 25% and Unprecedented Low Drive Voltages in OLEDs

Ryutaro Komatsu, ^a Hisahiro Sasabe, *^{a,b} Yuki Seino, ^a Kohei Nakao, ^a and Junji Kido *^{a,b}

- a. Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510 Japan.
- b. Research Center for Organic Electronics (ROEL), Yamagata University, Yonezawa, Yamagata, 992-8510 Japan.

E-mail: h-sasabe@yz.yamagata-u.ac.jp; kid@yz.yamagata-u.ac.jp

General procedure

General Considerations: Quantum chemical calculations were performed using the hybrid DFT functional Becke and Hartree-Fock exchange and Lee Yang and Parr correlation (B3LYP) as implemented by the Gaussian 09 program packages. Electrons were described by the Pople's 6-31G(d) and 6-311+G(d,p) basis sets for molecular structure optimization and single-point energy calculations, respectively. 1 H NMR and 13 C NMR spectra were recorded on JEOL 400 (400 MHz) spectrometer. Mass spectrum was obtained using a JEOL JMS-K9 mass spectrometer. DSC was performed using a Perkin-Elmer Diamond DSC Pyris instrument under nitrogen atmosphere at a heating rate of 10 $^{\circ}$ C min $^{-1}$. TGA was undertaken using a SEIKO EXSTAR 6000 TG/DTA 6200 unit under nitrogen atmosphere at a heating rate of 10 $^{\circ}$ C min $^{-1}$. UV–vis spectra was measured using a Shimadzu UV-3150 UV–vis–NIR spectrophotometer. Photoluminescence spectra were measured using a FluoroMax-2 (Jobin-Yvon-Spex) luminescence spectrometer. The I_p was determined by a PYS under the vacuum (=10 $^{-3}$ Pa). Transient PL decay curves and time resolved photoluminescence spectra were measured by using a streak camera (C4334 from Hamamatsu Photonics) at 5 K and 300 K.

Device Fabrication and Characterization: The substrates were cleaned with ultrapurified water and organic solvents, and then dry-cleaned for 30 minutes by exposure to UV-ozone. The organic layers were deposited onto the ITO substrates under the vacuum (= 10^{-5} Pa), successively. LiF and Al was patterned using a shadow mask with an array of 2 mm × 2mm openings without breaking the vacuum (= 10^{-5} Pa). The electroluminescent (EL) were taken using an optical multichannel analyzer Hamamatsu Photonics PMA-11. The current density-voltage and luminance-voltage characteristics were measured by using a Keithley source measure unit 2400 and a Minolta CS200 luminance meter, respectively.

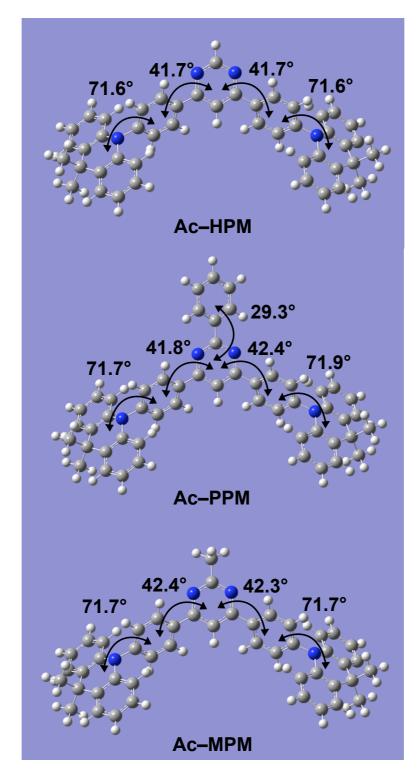


Figure S-1. Optimized molecular structures and dihedral angles of Ac–RPM derivatives.

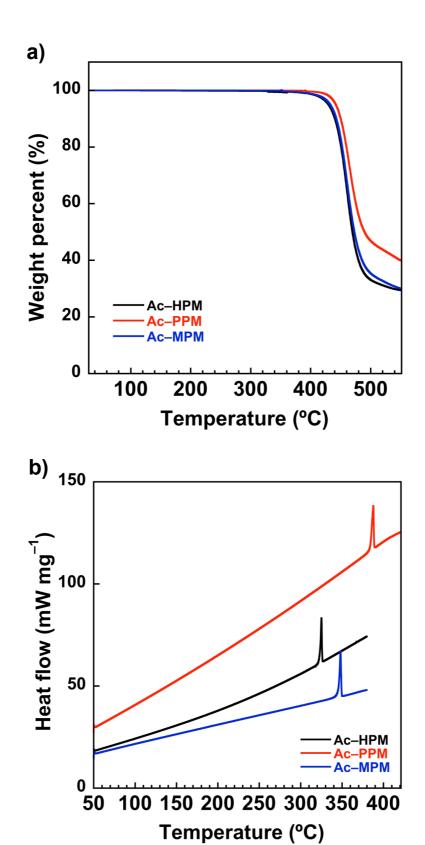
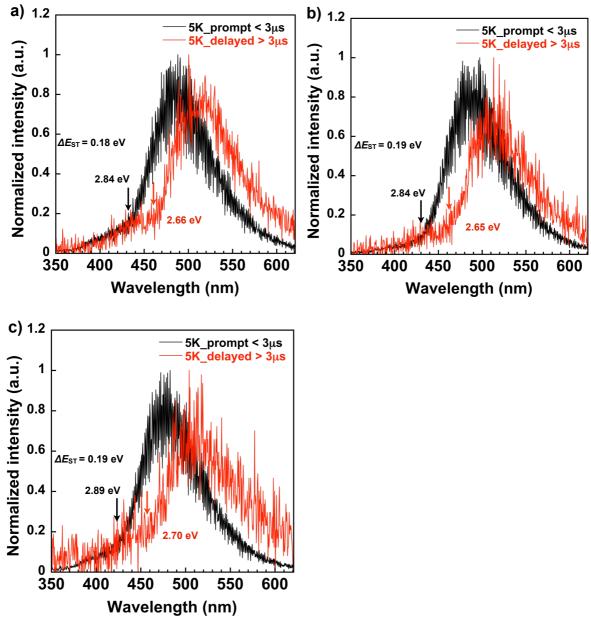



Figure S-2. a) TGA thermograms and b) DSC curves of Ac–RPM derivatives.

Figure S-3. PL spectra of toluene solution, neat film (30 nm), 10 wt% doped in DPEPO film (30 nm), and EL spectra of a) **Ac–HPM**, b) **Ac–PPM**, and c) **Ac–MPM**.

Figure S-4. Time resolved photoluminescence spectra of the a) **Ac–HPM-**, b) **Ac–PPM-**, and c) **Ac–MPM-**doped DPEPO film.

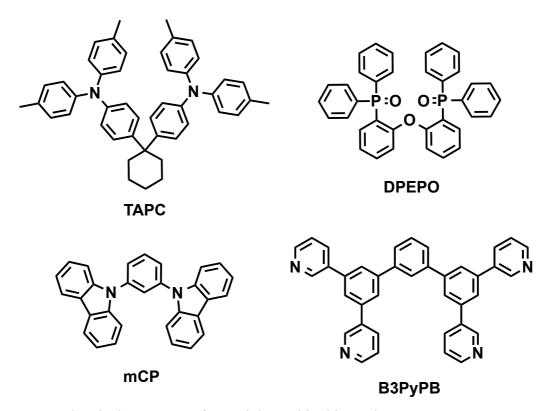
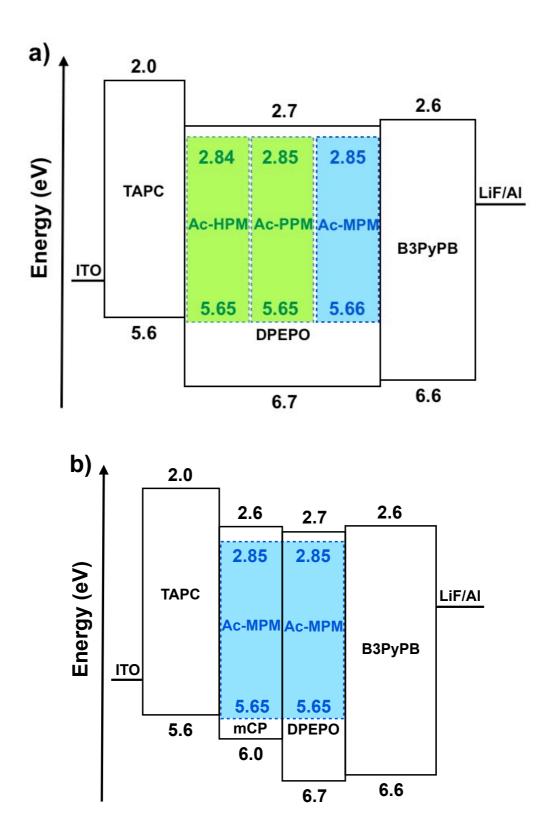
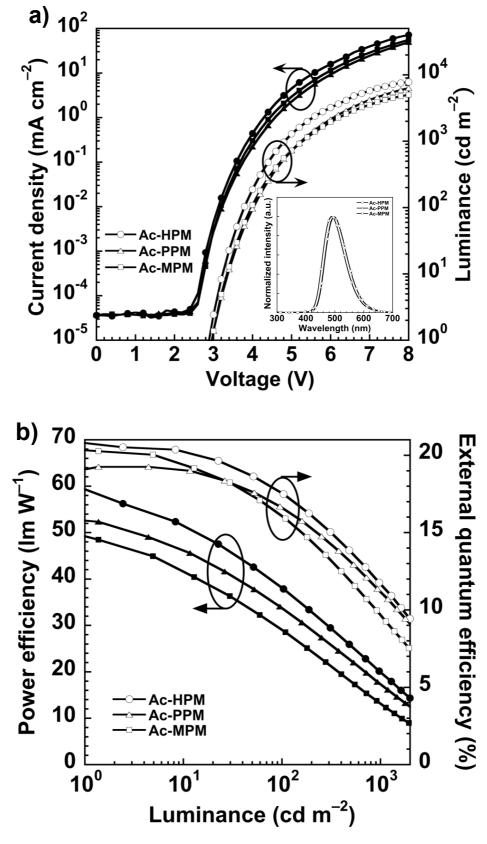
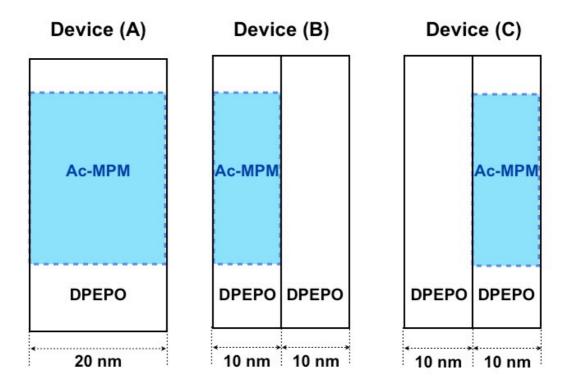


Figure S-5. Chemical structures of materials used in this work.

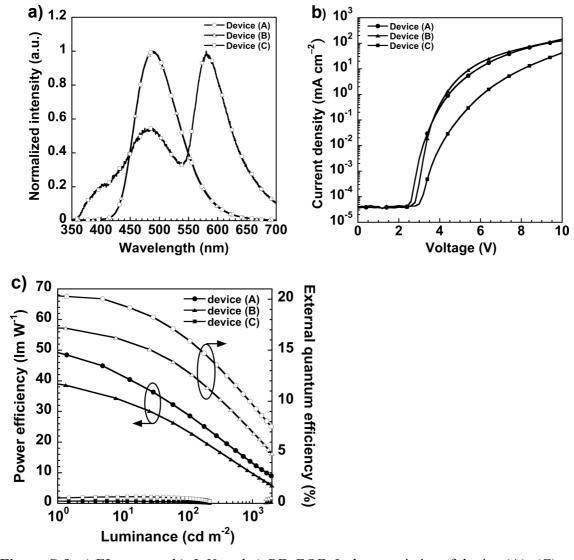

Figure S-6. Energy diagrams of Ac–RPM-based OLEDs.

Figure S-7. a) *J–V–L* characteristics, inset: EL spectra at 0.5 mA, and b) *PE–EQE–L* characteristics of **Ac–RPM**-based OLEDs.

Figure S-8. Configuration of emissive layer in device $(A)\sim(C)$.

Figure S-9. a) EL spectra, b) J-V, and c) PE-EQE-L characteristics of device (A)~(C).

Table S-1. Calculated HOMO, LUMO, ΔE_{H-L} , E_S , E_T and ΔE_{ST} values (eV).

Compound	HOMO ^[a]	LUMO ^[a]	$\Delta E_{ ext{H-L}}^{ ext{[b]}}$	$E_{\mathrm{S}}^{[\mathrm{c}]}$	$E_{\mathrm{T}}^{\;[\mathfrak{c}]}$	$\Delta E_{ m ST}^{ m [d]}$
Ac-HPM	-5.50	-2.19	3.31	2.85	2.84	0.01
Ac-PPM	-5.48	-2.11	3.37	2.90	2.89	0.01
Ac-MPM	-5.47	-2.09	3.38	2.91	2.90	0.01

[a] Calculated at RB3LYP 6-311+G(d,p)//RB3LYP 6-31G(d). [b] $\Delta E_{\text{H-L}} = \text{HOMO-LUMO}$. [c] Lowest singlet (E_{S}) and triplet (E_{T}) energy from TD-DFT at RB3LYP 6-31G(d)//RB3LYP 6-31G(d). [d] Energy difference between E_{S} and E_{T} energy ($\Delta E_{\text{ST}} = E_{\text{S}} - E_{\text{T}}$).

Table S-2. Summary of optical properties.

Compound	solution	solution	film	doped film	EL	EL
	$\lambda_{abs}\left[nm\right]^{[a]}$	$\lambda_{em} \left[nm \right]^{[a]}$	$\lambda_{em}\left[nm\right]^{[b]}$	$\lambda_{em} \left[nm \right]^{[c]}$	$\lambda_{em} \left[nm \right]^{[d]}$	FWHM [nm] ^[e]
Ac-HPM	378	489	496	498	499	86
Ac-PPM	381	484	486	498	498	86
Ac-MPM	375	478	482	489	489	87

[a] The absorption and emission peak of \mathbf{Ac} - \mathbf{RPM} in toluene $(1.0 \times 10^{-5} \,\mathrm{M})$. [b] The emission peak of \mathbf{Ac} - \mathbf{RPM} neat film. [c] The emission peak of 10 wt% \mathbf{Ac} - \mathbf{RPM} -doped DPEPO film. [d] The emission peak of \mathbf{Ac} - \mathbf{RPM} -based device. [e] The full width a half maximum (FWHM) of \mathbf{Ac} - \mathbf{RPM} -based device.

Table S-3. Summary of OLED performances.

Device	$V_{ m on}/~\eta_{ m p,~on}/\eta_{ m c,~on}/~{ m EQE}$	$V_{100}/~\eta_{ m p,~100}/\eta_{ m c,~100}/~{ m EQE}$	$V_{1000}/\eta_{\rm p, \ 1000}/\eta_{\rm c, \ 1000}/\ { m EQE}$	$CIE(x, y)^{[d]}$
	$[V/ lm W^{-1}/ cd A^{-1}/ \%]^{[a]}$	$[V/ lm W^{-1}/ cd A^{-1}/ \%]^{[b]}$	$[V/ lm W^{-1}/ cd A^{-1}/ \%]^{[c]}$	
(A)	2.93 / 49.9 / 46.6 / 20.4	3.96 / 29.2 / 36.8 / 16.1	5.27 / 13.2 / 22.1 / 9.7	(0.19, 0.37)
(B)	3.14 / 39.4 / 39.4 / 17.2	3.94 / 23.8 / 29.7 / 13.0	5.15 / 9.79 / 16.0 / 7.0	(0.19, 0.37)
(C)	4.84 / 0.7 / 1.1 / 0.5	8.03 / 0.4 / 1.0 / 0.5	-/-/-	(0.33, 0.34)

[a] Voltge (V), power efficiency (η_p), current efficiency (η_c) and external quantum efficiency (EQE) at 1 cd m⁻². [b] V, η_p , η_c , and EQE at 100 cd m⁻². [c] V, η_p , η_c , and EQE at 1000 cd m⁻². [d] CIE at 100 cd m⁻².

Table S-4. Summary of performances in blue TADF-OLED.

	$V_{\rm on}^{[a]}$	$\eta_{p,100}/\eta_{{ m ext},100}{}^{[{ m b}]}$	$\eta_{p,500}/\eta_{{ m ext},500}$ [c]	$\eta_{p,1000}/\eta_{ m ext,1000}$ [d]	$\eta_{p, ext{max}}/\eta_{ ext{ext,max}}$ [e]	CIE (x, y)
	[V]	$[lm W^{-1}/\%]$	$[lm\ W^{-1}/\%]$	$[lm\ W^{-1}/\%]$	$[lm W^{-1}/\%]$	
This work	2.8	34.0/17.2	20.6/12.3	15.5/10.1	61.6/24.5	(0.19,0.37)
Ref.[18]	3.7	-	-	-/16.0	-/19.5	(0.16, 0.20)
Ref.[19]	(4.0)	-/17.1	-	-/10.4	-/20.6	(0.19, 0.35)
Ref.[20]	(3.5)	-	-	-	-/20.1	(0.14, 0.16)
Ref.[21]	3.20	-	-/11.3	-	-/21.2	(0.20, 0.35)
Ref.[22]	(4.0)	-	18.0/16.7	-	42.7/25.0	(0.18, 0.33)
Ref.[23]	3.00	-	-	9.8/10.6	30.4/22.3	(0.15,0.20)

[a] Voltage (V) at 1 cd m⁻². [b] Power efficiency (η_p) and external quantum efficiency (η_{ext}) at 100 cd m⁻². [c] η_p , η_{ext} at 500 cd m⁻² [d] η_p , η_{ext} at 1000 cd m⁻². [e] Maximum power efficiency ($\eta_{p,max}$), maximum external quantum efficiency ($\eta_{ext,max}$).

Synthetic procedure

Synthesis of Ac–Cl:

9,9-Dimethyl-9,10-dihydroacridine (3.5 g, 16.7 mmol), 1-bromo-chlorobenzene (3.19 g, 16.7 mmol), and K_2CO_3 (6.9 g, 50 mmol) were added to a round bottom flask. Xylene (200 ml) was added, and nitrogen was bubbled through the mixture for 1 hour. Then, $Pd(OAc)_2$ (0.19 g, 0.84 mmol) and $P(tBu)_3$ (0.6 ml, 2.5 mmol) were added and the resultant mixture was stirred for 48 hours at reflux temperature under N_2 flow. The precipitate was filtered, and washed with brine, dried over anhydrous Na_2SO_4 , filtered, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 10:1) to afford **Ac–Cl** (3.2 g, 60%) as a yellow solid: 1H -NMR (400MHz,DMSO-d₆): $\delta = 7.75$ (d, 2H, J=8.8 Hz), 7.49 (dd, 2H, J=7.6, 1.2 Hz), 7.41 (d, 2H, J=8.4 Hz), 7.01–6.89 (m, 4H), 6.14 (dd, 2H, J=8.4, 1.2 Hz), 1.61 (s, 6H) ppm.

Synthesis of Ac-Bpin:

10.0 30 Ac-Cl (3.2)mmol), **KOAc** (2.9)mmol), g, 4,4,4',5,5,5',5',-octamethyl-2-2'-bi-1,3,2-dioxaborolane (3.05 g, 12 mmol) were added to a round bottom flask. 1,4-Dioxane (100 ml) was added, and nitrogen bubbled through the mixture for 1 hour. Then, Pd(OAc)₂ (110 mg, 0.5 mmol) and SPhos (0.2 g, 0.5 mmol) were added and the resultant mixture was stirred for 2 hours at reflux temperature under N₂ flow. The precipitate was filtered, and washed with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/toluene = 10:1) to afford Ac-Bpin (2.45 g, 60%) as a pale yellow solid: ¹H-NMR (400MHz,DMSO): $\delta = 7.98$ (d, 2H, J=8.4 Hz), 7.48 (dd, 2H, J=8.0, 2.0 Hz), 7.37 (d, 2H, J=8.4 Hz), 6.98–6.88 (m, 4H), 6.13 (dd, 2H, J=8.0, 1.2 Hz), 1.61 (s, 6H), 1.34 (s, 12H) ppm.

Synthesis of Ac-HPM:

Ac–Bpin (1.50 g, 3.65 mmol) and 4,6-dichloropyrimidine (0.27g, 1.73 mmol) were added to a round bottom flask. 1,4-dioxane (30 ml) and aqueous K_3PO_4 (1.35 M, 6.8 ml) were added and nitrogen was was bubbled through the mixture for 1 hour. Then, $Pd_2(dba)_3$ (170 mg, 0.18 mmol) and Sphos (75 mg, 0.18 mmol) were added and the resultant mixture was stirred for 4 hours at reflux temperature under N_2 flow. The precipitate was filtered, and washed with brine, dried over anhydrous Na_2SO_4 , filtered, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: hexane/ethyl acetate =

10:1 v/v) to afford **Ac–HPM** (0.45 g, 38%) as a yellow solid: 1 H-NMR (400 MHz,CDCl₃): δ = 9.43 (d, 1H, J=1.2 Hz), 8.45 (d, 4H, J=8.8 Hz), 8.30 (d, 1H, J=1.6 Hz), 7.55 (d, 4H, J=8.4 Hz), 7.48 (dd, 4H, J=7.6, 1.6 Hz), 7.01–6.93 (m, 8H), 6.35 (dd, 4H, J=8.0, 1.6 Hz), 1.71 (s, 12H) ppm; 13 C-NMR (100 MHz, CDCl₃): δ = 164.19, 159.45, 144.05, 140.57, 136.75, 132.06, 130.20, 129.85, 126.42, 125.38, 120.8, 114.06, 113.14, 36.01, 31.29 ppm; MS: m/z = 648 [M+H] $^{+}$; Anal calcd for C₄₆H₃₈N₄: C, 85.42; H, 5.92; N, 8.66%. Found: C, 85.55; H, 5.90; N, 8.67%.

Synthesis of Ac-PPM:

Ac–Bpin (1.42 g, 3.45 mmol) and 4,6-dichloro-2-phenylpyrimidine (0.39g, 1.73 mmol) were added to a round bottom flask. 1,4-dioxane (30 ml) and aqueous K₃PO₄ (1.35 M, 6.4 ml) were added and nitrogen was bubbled through the mixture for 1 hour. Then, Pd₂(dba)₃ (160 mg, 0.17 mmol) and Sphos (70 mg, 0.17 mmol) were added and the resultant mixture was stirred for 2 hours at reflux temperature under N₂ flow. The precipitate was filtered, and washed with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: chloroform) to afford **Ac–PPM** (0.82 g, 67%) as a yellow solid: ¹H-NMR (400 MHz,CDCl₃) : δ = 8.80 (dd, 2H, J=8.0, 1.6 Hz), 8.59 (d, 4H, J=8.8 Hz), 8.20 (s, 1H), 7.59–7.48 (m, 11H), 7.59–6.94 (m, 8H), 6.38 (dd, 4H, J=8.0, 1.2 Hz), 1.72 (s, 12H) ppm; ¹³C-NMR (100 MHz, CDCl₃) : δ = 164.87, 164.26, 143.86, 140.64, 137.79, 137.26, 131.96, 130.99, 130.15, 129.94, 128.61, 128.53, 126.44, 125.38, 120.81, 114.09, 110.65, 36.02, 31.33 ppm ; MS: m/z = 724 [M+H]⁺ ; Anal calcd for C₅₂H₄₂N₄: C, 86.39; H, 5.86; N, 7.75%. Found: C, 86.19; H, 5.81; N, 7.78%.

Synthesis of Ac–MPM:

Ac–Bpin (1.50 g, 3.65 mmol) and 4,6-dichloro-2-methylpyrimidine (0.30g, 1.73 mmol) were added to a round bottom flask. 1,4-dioxane (30 ml) and aqueous K_3PO_4 (1.35 M, 6.8 ml) were added and nitrogen was bubbled through the mixture for 1 hour. Then, $Pd_2(dba)_3$ (170 mg, 0.18 mmol) and Sphos (75 mg, 0.18 mmol) were added and the resultant mixture was stirred for 4 hours at reflux temperature under N_2 flow. The precipitate was filtered, and washed with brine, dried over anhydrous Na_2SO_4 , filtered, and evaporated to dryness. The resulting solid was purified by chromatography on silica gel (eluent: chloroform) to afford **Ac–MPM** (0.28 g, 23%) as a pale yellow solid: 1H -NMR (400 MHz, CDCl₃) : δ = 8.42 (d, 4H, J=8.8 Hz), 8.08 (s,1H), 7.54–7.47 (m, 8H), 7.00–6.90 (m, 8H), 6.34 (dd, 4H, J=8.0, 1.6 Hz), 2.95 (s, 3H), 1.71 (s, 12H) ppm; 13 C-NMR (100 MHz, CDCl₃) : δ = 169.02, 164.41, 143.74, 140.61, 137.29, 132.04, 130.12, 129.94, 126.40, 125.39, 120.79, 114.06, 110.51, 36.01, 31.35, 26.58 ppm; MS: m/z = 661 [M+H]⁺; Anal calcd for $C_{47}H_{40}N_4$: C, 85.42; H, 6.10; N, 8.48%. Found: C, 85.47; H, 6.06; N, 8.49%.