Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

## **Supporting Information**

# First NIR luminescent polymeric high-nuclearity Cd-Ln nanoclusters from a long-chain Schiff base ligand

Xiaoping Yang,\*<sup>a</sup> Shiqin Wang,<sup>a</sup> Lijie Zhang,<sup>a</sup> Shaoming Huang,\*<sup>a</sup> Zongping Li,<sup>a</sup> Chengri Wang,<sup>a</sup> Ting Zhu<sup>a</sup> and Le Bo<sup>a</sup>

### Contents

| 1. General Procedures                                                        | S1  |
|------------------------------------------------------------------------------|-----|
| 2. Synthesis of <b>1-3</b>                                                   | S2  |
| 3. Views of crystal structures of <b>1</b> and <b>3</b>                      | S3  |
| 4. Powder XRD patterns of <b>1-3</b>                                         | S4  |
| 5. <sup>1</sup> H NMR spectra of <b>1-3</b>                                  | S6  |
| 6. The NIR luminescence spectrum of <b>2</b> and <b>3</b> in the solid state | S9  |
| 7. X-Ray Crystallography                                                     | S10 |

### **<u>1. General Procedures</u>**

All reactions were performed under dry oxygen-free dinitrogen atmospheres using standard Schlenk techniques. Physical measurements: NMR: VARIAN UNITY-plus. 600 spectrometer (<sup>1</sup>H, 600 MHz) at 298 K; Powder XRD: SMART APE II DUO; IR: FTIR-650 spectrometer. Melting points were obtained in sealed glass capillaries under dinitrogen and are uncorrected. Elemental analyses (C, H, N) were carried out on a EA1112 elemental analysis. Transmission electron microscopy (TEM) images were recorded on a JEOL JEM-1200EX transmission electron microscope. Field emission scanning electron microscope. Absorption spectra were obtained on a UV-3600 spectrophotometer, and excitation and emission spectra on a QuantaMaster PTI fluorimeter.

#### 2. Synthesis of 1-3

{[La<sub>6</sub>Cd<sub>22</sub>Cl<sub>14</sub>(OH)<sub>2</sub>L<sub>10</sub>(OAc)<sub>26</sub>](EtOH)<sub>5</sub>(EtOEt)<sub>2</sub>(MeOH)<sub>10</sub>(H<sub>2</sub>O)<sub>15</sub>}<sub>n</sub> (1). Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O (0.50 mmol, 0.1322 g), LaCl<sub>3</sub>·6H<sub>2</sub>O (0.10 mmol, 0.0353 g) and H<sub>2</sub>L (0.20 mmol, 0.0770 g) were dissolved in 50 mL MeOH at room temperature, and a solution of NaOH in EtOH (0.03 mol/L, 10 ml) was then added. The resulting solution was stirred and heated under reflux for 30 mins. It was allowed to cool and was then filtered. Diethyl ether was allowed to diffuse slowly into the filtrate at room temperature and pale yellow crystals were obtained after two weeks. The crystals were filtered off, washed with EtOH (5 ml) and dried in the air for one week. Yield (based on Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O): 0.1131 g (53 %). m. p. > 212 °C (dec.). Elemental analysis: Found: C, 34.62; H, 4.42; N, 2.73 %. Calc. for C<sub>280</sub>H<sub>356</sub>Cd<sub>22</sub>Cl<sub>14</sub>N<sub>20</sub>La<sub>6</sub>O<sub>99</sub>(EtOH)<sub>5</sub>(EtOEt)<sub>2</sub>(MeOH)<sub>10</sub>(H<sub>2</sub>O)<sub>15</sub>: C, 34.76; H, 4.44; N, 2.70 %. IR (cm<sup>-1</sup>): 2930 (m), 1633 (s), 1572 (s), 1465 (s), 1210 (m), 1077 (m), 1012 (w), 959 (w), 851 (w), 742 (m), 670 (w), 615 (w).

{[Nd<sub>6</sub>Cd<sub>22</sub>Cl<sub>14</sub>(OH)<sub>2</sub>L<sub>10</sub>(OAc)<sub>26</sub>](EtOH)<sub>7</sub>(EtOEt)<sub>3</sub>(MeOH)<sub>9</sub>(H<sub>2</sub>O)<sub>10</sub>}<sub>n</sub> (2). The procedure was the same as that for 1 using NdCl<sub>3</sub>·6H<sub>2</sub>O (0.10 mmol, 0.0359 g). Pale yellow single crystals of 2 were formed after two weeks. Yield (based on Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O): 0.1242 g (58 %). m. p. > 215 °C (dec.). Elemental analysis: Found: C, 35.57; H, 4.45; N, 2.70 %. Calc. for C<sub>280</sub>H<sub>356</sub>Cd<sub>22</sub>Cl<sub>14</sub>N<sub>20</sub>Nd<sub>6</sub>O<sub>99</sub>(EtOH)<sub>7</sub>(EtOEt)<sub>3</sub>(MeOH)<sub>9</sub>(H<sub>2</sub>O)<sub>10</sub>: C, 35.31; H, 4.49; N, 2.68 %. IR (CH<sub>3</sub>OH, cm<sup>-1</sup>): 2921 (m), 1635 (s), 1573 (s), 1467 (s), 1212 (m), 1078 (m), 1013 (w), 960 (w), 852 (w), 740 (m), 672 (w), 616 (w). <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD):  $\delta$  (ppm) -14.634, -9.853, -8.525, -8.248, -6.436, -5.066, -4.402, -3.851, -2.143, -1.546, -0.609, 0.059, 0.286, 0.696, 0.862, 1.820, 2.102, 3.310, 3.701, 4.350, 5.389, 6.000, 6.166, 6.572, 6.740, 6.771, 6.851, 6.980, 7.095, 7.177, 7.984, 8.116, 8.207, 8.287, 8.616, 9.003, 9.100, 9.804, 9.905, 10.592, 10.766, 11.090, 11.252, 12.029, 14.042, 16.869.

 $[Yb_6Cd_{18}Cl_6(OH)_2L_9(OAc)_{28}](EtOH)_5(EtOEt)(MeOH)_{16}(H_2O)_{20}$  (3). The procedure was the same as that for 1 using YbCl<sub>3</sub>·6H<sub>2</sub>O (0.10 mmol, 0.0388 g). Pale yellow single crystals of 3 were formed after two weeks. Yield (based on Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O): 0.1517 g (65 %). m. p. > 195 °C (dec.). Elemental analysis: Found: C, 35.32; H, 4.78; N, 2.67 %. Calc. for C<sub>254</sub>H<sub>320</sub>Cd<sub>18</sub>Cl<sub>6</sub>N<sub>18</sub>Yb<sub>6</sub>O<sub>94</sub>(EtOH)<sub>5</sub>(EtOEt)(MeOH)<sub>16</sub>(H<sub>2</sub>O)<sub>20</sub>: C, 35.58; H, 4.84; N, 2.63 %. IR (CH<sub>3</sub>OH, cm<sup>-1</sup>): 2926 (m), 1634 (s), 1576 (s), 1467 (s), 1410 (m), 1340 (m), 1210 (m), 1235 (m), 1076 (m), 1015 (m), 958 (w), 854 (w), 741 (m), 660 (m).

## 3. Views of crystal structures of 1 and 3



Fig. S1. A view along the *b*-axis of the crystal structure of 1 with enclosed diethyl ether.



Fig. S2. A view along the *ac*-axis of the crystal structure of 3.

### 4. Powder XRD patterns of 1-3





Figure S3. Powder XRD patterns of 1-3

#### 5. <sup>1</sup>H NMR spectra of 1-3

<sup>1</sup>H NMR experiments were performed on a Bruker Avance III NMR spectrometer at 500.13MHz, equipped with a 5 mm room temperature probe (Bruker Instruments Inc., Germany), and reported as parts per million (ppm) from the internal standard TMS (solvent, CDCl<sub>3</sub>). The experimental conditions are as follows: spectrometer frequency 500.13 MHz, spectral width (SW) 10 ppm, pulse 90°, acquisition time (AQ) 5.40 s, relaxation delay (RD) 2.00 s, and Fourier Transform (FT) size 32K data point. An exponential window function with a line-broadening factor of 1 Hz was applied to the FID before Fourier transformation.



Fig. S4. <sup>1</sup>H NMR spectrum of 1 in CDCl<sub>3</sub> at 298K.





(c)

Fig. S5. <sup>1</sup>H NMR spectrum of 2 in CDCl<sub>3</sub> at 298K.



Fig. S6. <sup>1</sup>H NMR spectrum of **3** in CDCl<sub>3</sub> at 298K.

## 6. The NIR luminescence spectrum of 2 and 3 in the solid state



Fig. S7. The NIR luminescence spectrum of 2 in the solid state.



Fig. S8. The NIR luminescence spectrum of 3 in the solid state.

#### 7. X-Ray Crystallography

Data were collected on a Smart APEX CCD diffractometer with graphite monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 190 K. The data set was corrected for absorption based on multiple scans and reduced using standard methods. Data reduction was performed using DENZO-SMN.<sup>1</sup> The structures were solved by direct methods and refined anisotropically using full-matrix least-squares methods with the SHELX 97 program package.<sup>2</sup> Coordinates of the non-hydrogen atoms were refined anisotropically, while hydrogen atoms were included in the calculation isotropically but not refined. Neutral atom scattering factors were taken from Cromer and Waber.<sup>3</sup>

For the crystal structures of 1-3, some uncoordinated solvent molecules such as  $CH_3OH_3$ , C<sub>2</sub>H<sub>5</sub>OH, C<sub>2</sub>H<sub>5</sub>OC<sub>2</sub>H<sub>5</sub> and H<sub>2</sub>O molecules were found to be badly disordered. Attempts to model the disorder were unsatisfactory. The contributions to the scattering factors due to these solvent molecules were removed by use of the utility SQUEEZE (Sluis and Spek, 1990) in PLATON98 (Spek, 1998). PLATON98 was used as incorporated in WinGX (Farrugia, 1999). Crystallographic data for 1-3 (CCDC reference numbers 1417785-1417787) are presented in in Table **S**1 and selected bond lengths are given Tables S2-S4. See http://www.rsc.org/suppdata/cc/ for crystallographic data in CIF format.

- Ref. (1) DENZO-SMN. (1997). Z. Otwinowski, W. Minor, *Methods in Enzymology*, 276: *Macromolecular Crystallography, Part A*, 307 – 326, C. W. J. Carter, M. I. Simon, R. M. Sweet, Editors, Academic Press.
  - (2) G. H. Sheldrick, SHELX 97, *A software package for the solution and refinement of X-ray data*; University of Göttingen: Göttingen, Germany, **1997**.
  - (3) D. T. Cromer, J. T. Waber, *International Tables for X-Ray Crystallography*, Kynoch Press, Birmingham, vol. 4, **1974**, Table 2.2A.

|                                                                       | 1                                        | 2                                          | 3                                     |
|-----------------------------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|
| Formula                                                               | $C_{280}H_{356}Cd_{22}Cl_{14}N_{20}La_6$ | $C_{280}H_{356}Cd_{22}Cl_{14}N_{20}Nd_{6}$ | $C_{254}H_{320}Cd_{18}Cl_6N_{18}Yb_6$ |
| ronnuta                                                               | O <sub>99</sub>                          | O <sub>99</sub>                            | $O_{94}$                              |
| Fw                                                                    | 9388.41                                  | 9420.39                                    | 8403.42                               |
| Crystal system                                                        | Monoclinic                               | Monoclinic                                 | Monoclinic                            |
| Space group                                                           | P2(1)/n                                  | P2(1)/n                                    | C222                                  |
| a [Å]                                                                 | 25.333(11)                               | 24.724(5)                                  | 41.918(8)                             |
| <i>b</i> [Å]                                                          | 24.730(10)                               | 24.125(5)                                  | 23.335(5)                             |
| c [Å]                                                                 | 40.341(19)                               | 39.007(8)                                  | 41.805(8)                             |
| α [deg]                                                               | 90                                       | 90                                         | 90                                    |
| $\beta$ [deg]                                                         | 97.579(16)                               | 97.61(3)                                   | 113.62(3)                             |
| γ [deg]                                                               | 90                                       | 90                                         | 90                                    |
| V / [ų]                                                               | 25053(20)                                | 23062(8)                                   | 37467(13)                             |
| d / [g/cm <sup>3</sup> ]                                              | 1.245                                    | 1.357                                      | 1.490                                 |
| Z                                                                     | 2                                        | 2                                          | 4                                     |
| <i>T</i> [K]                                                          | 190(1)                                   | 190(1)                                     | 190(1)                                |
| F(000)                                                                | 9208                                     | 9244                                       | 16432                                 |
| $\mu$ , mm <sup>-1</sup>                                              | 1.540                                    | 1.793                                      | 2.588                                 |
| $\theta$ rang, deg                                                    | 1.31-25.00                               | 2.97-24.98                                 | 3.00-25.00                            |
| reflns meads                                                          | 42864                                    | 39887                                      | 32716                                 |
| reflns used                                                           | 42864                                    | 39887                                      | 32716                                 |
| params                                                                | 1990                                     | 1990                                       | 1793                                  |
| R1 <sup><i>a</i></sup> , wR2 <sup><i>a</i></sup> [ $I > 2\sigma(I)$ ] | 0.0932, 0.2440                           | 0.0561, 0.1375                             | 0.0428, 0.0986                        |
| R1, wR2 (all data)                                                    | 0.1488, 0.2715                           | 0.0873, 0.1480                             | 0.0598, 0.1036                        |
| Quality of fit                                                        | 1.043                                    | 1.066                                      | 1.050                                 |

 Table S1. Crystal data and structure refinement for 1-3.

<sup>*a*</sup> R1 =  $\Sigma |F_o| - |F_c|\Sigma |F_o|$ . wR2 =  $[\Sigma w[(F_o^2 - F_c^2)^2]/\Sigma |[w(F_o^2)^2]]^{1/2}$ .  $w = 1/[\sigma^2(F_o^2) + (0.075P)^2]$ , where  $P = [\max(F_o^2, 0) + 2F_c^2]/3$ .

| La(1)-O(4)     | 2.330(9)  | Cd(4)-O(35)     | 2.321(9)  |
|----------------|-----------|-----------------|-----------|
| La(1)-O(24)    | 2.367(9)  | Cd(4)-O(12)     | 2.323(9)  |
| La(1)-O(2)     | 2.375(8)  | Cd(4)-O(11)     | 2.557(10) |
| La(1)-O(28)    | 2.465(8)  | Cd(5)-O(14)     | 2.285(10) |
| La(1)-O(21)    | 2.475(10) | Cd(5)-O(39)     | 2.309(12) |
| La(1)-O(26)    | 2.490(10) | Cd(5)-O(38)     | 2.314(10) |
| La(1)-N(2)     | 2.616(11) | Cd(5)-O(13)     | 2.463(10) |
| La(1)-O(1)     | 2.682(9)  | Cd(5)-O(40)     | 2.472(10) |
| La(2)-O(12)    | 2.356(8)  | Cd(5)-Cl(5)     | 2.523(4)  |
| La(2)-O(32)    | 2.373(10) | Cd(6)-O(41)     | 2.269(9)  |
| La(2)-O(10)    | 2.386(9)  | Cd(6)-N(8)      | 2.296(11) |
| La(2)-O(33)    | 2.391(9)  | Cd(6)-O(43)     | 2.338(11) |
| La(2)-O(35)    | 2.462(10) | Cd(6)-O(16)     | 2.339(9)  |
| La(2)-O(37)    | 2.488(12) | Cd(6)-O(36)     | 2.408(9)  |
| La(2)-N(6)     | 2.638(11) | Cd(6)-O(40)     | 2.555(10) |
| La(2)-O(9)     | 2.661(11) | Cd(7)-O(7)#1    | 2.273(8)  |
| La(3)-O(42)    | 2.346(10) | Cd(7)-O(47)     | 2.330(9)  |
| La(3)-O(44)    | 2.391(9)  | Cd(7)-N(4)#1    | 2.334(13) |
| La(3)-O(16)    | 2.399(8)  | Cd(7)-O(46)     | 2.343(9)  |
| La(3)-O(18)    | 2.404(8)  | Cd(7)-O(18)     | 2.358(8)  |
| La(3)-O(47)    | 2.465(9)  | Cd(7)-O(17)     | 2.512(9)  |
| La(3)-O(45)    | 2.470(9)  | Cd(8)-O(7)#1    | 2.326(9)  |
| La(3)-O(15)    | 2.625(9)  | Cd(8)-O(46)     | 2.332(8)  |
| La(3)-N(9)     | 2.648(12) | Cd(8)-O(8)#1    | 2.457(8)  |
| Cd(1)-N(3)     | 2.284(11) | Cd(8)-Cl(4)     | 2.574(4)  |
| Cd(1)-O(6)     | 2.291(8)  | Cd(8)-Cl(7)#2   | 2.581(4)  |
| Cd(1)-O(28)    | 2.310(9)  | Cd(8)-Cl(7)     | 2.655(4)  |
| Cd(1)-O(25)    | 2.311(10) | Cd(9)-N(10)     | 2.315(11) |
| Cd(1)-O(4)     | 2.369(8)  | Cd(9)-O(20)     | 2.320(8)  |
| Cd(1)-O(3)     | 2.563(9)  | Cd(9)-O(48)     | 2.336(8)  |
| Cd(2)-O(6)     | 2.301(9)  | Cd(9)-Cl(3)     | 2.641(4)  |
| Cd(2)-O(30)    | 2.331(11) | Cd(9)-Cl(2)     | 2.674(4)  |
| Cd(2)-O(25)    | 2.349(10) | Cd(9)-Cl(4)     | 2.855(4)  |
| Cd(2)-O(5)     | 2.413(12) | Cd(10)-O(20)    | 2.335(9)  |
| Cd(2)- $Cl(6)$ | 2.490(4)  | Cd(10)-O(22)    | 2.374(9)  |
| Cd(2)-O(29)    | 2.507(10) | Cd(10)-O(19)    | 2.463(8)  |
| Cd(3)-O(31)    | 2.286(11) | Cd(10)-O(49)    | 2.469(10) |
| Cd(3)-N(5)     | 2.309(11) | Cd(10)- $Cl(1)$ | 2.495(4)  |
| Cd(3)-O(10)    | 2.359(8)  | Cd(10)- $Cl(3)$ | 2.592(4)  |
| Cd(3)-O(27)    | 2.375(8)  | Cd(11)-N(1)     | 2.262(9)  |
| Cd(3)-O(34)    | 2.387(10) | Cd(11)-O(23)    | 2.266(10) |
| Cd(3)-O(29)    | 2.499(11) | Cd(11)-O(2)     | 2.336(8)  |
| Cd(4)-O(14)    | 2.293(9)  | Cd(11)-O(22)    | 2.345(9)  |
| Cd(4)-N(7)     | 2.320(12) | Cd(11)-Cl(2)    | 2.584(4)  |
| Cd(4)-O(38)    | 2.321(10) | Cd(11)-O(21)    | 2.642(9)  |

Table S2. Selected Bond Lengths  $(\text{\AA})$  for 1.

\_

| <br>Nd(1)-O(4) | 2.301(5) | Cd(4)-O(35)   | 2.296(5) |
|----------------|----------|---------------|----------|
| Nd(1)-O(24)    | 2.303(5) | Cd(4)-O(12)   | 2.306(5) |
| Nd(1)-O(2)     | 2.336(5) | Cd(4)-O(11)   | 2.501(5) |
| Nd(1)-O(26)    | 2.408(5) | Cd(5)-O(14)   | 2.235(5) |
| Nd(1)-O(28)    | 2.409(5) | Cd(5)-O(38)   | 2.269(5) |
| Nd(1)-O(21)    | 2.427(5) | Cd(5)-O(39)   | 2.274(6) |
| Nd(1)-N(2)     | 2.548(6) | Cd(5)-O(13)   | 2.408(6) |
| Nd(1)-O(1)     | 2.607(5) | Cd(5)-O(40)   | 2.409(5) |
| Nd(2)-O(33)    | 2.307(5) | Cd(5)-Cl(5)   | 2.459(2) |
| Nd(2)-O(12)    | 2.311(5) | Cd(6)-O(41)   | 2.205(5) |
| Nd(2)-O(32)    | 2.321(5) | Cd(6)-N(8)    | 2.280(6) |
| Nd(2)-O(10)    | 2.337(5) | Cd(6)-O(43)   | 2.282(5) |
| Nd(2)-O(37)    | 2.404(5) | Cd(6)-O(16)   | 2.325(5) |
| Nd(2)-O(35)    | 2.432(5) | Cd(6)-O(36)   | 2.387(5) |
| Nd(2)-N(6)     | 2.547(6) | Cd(6)-O(40)   | 2.486(5) |
| Nd(2)-O(9)     | 2.597(6) | Cd(7)-O(7)#1  | 2.243(5) |
| Nd(3)-O(44)    | 2.310(5) | Cd(7)-N(4)#1  | 2.256(7) |
| Nd(3)-O(42)    | 2.311(5) | Cd(7)-O(46)   | 2.264(5) |
| Nd(3)-O(16)    | 2.346(5) | Cd(7)-O(47)   | 2.287(5) |
| Nd(3)-O(18)    | 2.354(5) | Cd(7)-O(18)   | 2.325(5) |
| Nd(3)-O(45)    | 2.405(5) | Cd(7)-O(17)   | 2.454(5) |
| Nd(3)-O(47)    | 2.414(5) | Cd(8)-O(7)#1  | 2.245(5) |
| Nd(3)-N(9)     | 2.543(7) | Cd(8)-O(46)   | 2.314(5) |
| Nd(3)-O(15)    | 2.560(5) | Cd(8)-O(8)#1  | 2.413(5) |
| Cd(1)-N(3)     | 2.242(6) | Cd(8)-Cl(7)#2 | 2.495(2) |
| Cd(1)-O(25)    | 2.257(5) | Cd(8)-Cl(4)   | 2.526(2) |
| Cd(1)-O(6)     | 2.266(5) | Cd(8)-Cl(7)   | 2.607(2) |
| Cd(1)-O(28)    | 2.277(5) | Cd(9)-O(20)   | 2.249(5) |
| Cd(1)-O(4)     | 2.344(5) | Cd(9)-N(10)   | 2.259(6) |
| Cd(1)-O(3)     | 2.505(5) | Cd(9)-O(48)   | 2.274(5) |
| Cd(2)-O(6)     | 2.231(5) | Cd(9)-Cl(3)   | 2.587(2) |
| Cd(2)-O(30)    | 2.256(6) | Cd(9)-Cl(2)   | 2.596(2) |
| Cd(2)-O(25)    | 2.284(5) | Cd(9)-Cl(4)   | 2.785(2) |
| Cd(2)-O(5)     | 2.380(6) | Cd(10)-O(22)  | 2.270(5) |
| Cd(2)-Cl(6)    | 2.417(2) | Cd(10)-O(20)  | 2.287(5) |
| Cd(2)-O(29)    | 2.436(5) | Cd(10)-O(49)  | 2.409(5) |
| Cd(3)-O(31)    | 2.268(5) | Cd(10)-O(19)  | 2.409(5) |
| Cd(3)-N(5)     | 2.276(6) | Cd(10)-Cl(1)  | 2.440(2) |
| Cd(3)-O(34)    | 2.287(5) | Cd(10)-Cl(3)  | 2.545(2) |
| Cd(3)-O(10)    | 2.321(5) | Cd(11)-O(23)  | 2.230(5) |
| Cd(3)-O(27)    | 2.353(5) | Cd(11)-N(1)   | 2.245(6) |
| Cd(3)-O(29)    | 2.414(5) | Cd(11)-O(22)  | 2.293(5) |
| Cd(4)-O(14)    | 2.236(5) | Cd(11)-O(2)   | 2.315(5) |
| Cd(4)-O(38)    | 2.264(5) | Cd(11)-Cl(2)  | 2.545(2) |
| Cd(4)-N(7)     | 2.272(7) | Cd(11)-O(21)  | 2.626(5) |

Table S3. Selected Bond Lengths  $(\text{\AA})$  for 2.

\_

| Yb(1)-O(19) | 2.205(4)   |                |            |
|-------------|------------|----------------|------------|
| Yb(1)-O(2)  | 2.252(4)   | Cd(3)-O(6)     | 2.344(4)   |
| Yb(1)-O(18) | 2.264(4)   | Cd(3)-O(5)     | 2.498(4)   |
| Yb(1)-O(23) | 2.274(4)   | Cd(4)-N(4)     | 2.306(5)   |
| Yb(1)-O(46) | 2.318(4)   | Cd(4)-O(8)     | 2.311(4)   |
| Yb(1)-O(44) | 2.348(4)   | Cd(4)-O(30)    | 2.331(4)   |
| Yb(1)-N(9)  | 2.521(5)   | Cd(4)-O(33)    | 2.337(4)   |
| Yb(1)-O(1)  | 2.526(4)   | Cd(4)-O(31)    | 2.358(4)   |
| Yb(2)-O(29) | 2.218(4)   | Cd(4)- $Cl(3)$ | 2.5434(18) |
| Yb(2)-O(8)  | 2.236(4)   | Cd(5)-O(32)    | 2.211(5)   |
| Yb(2)-O(6)  | 2.240(4)   | Cd(5)-O(10)    | 2.243(4)   |
| Yb(2)-O(28) | 2.278(4)   | Cd(5)-O(35)    | 2.270(5)   |
| Yb(2)-O(26) | 2.333(4)   | Cd(5)-O(9)     | 2.397(5)   |
| Yb(2)-N(3)  | 2.491(5)   | Cd(5)-Cl(2)    | 2.467(2)   |
| Yb(2)-O(7)  | 2.533(4)   | Cd(5)-O(31)    | 2.568(4)   |
| Yb(2)-Cl(3) | 2.8575(19) | Cd(6)-O(10)    | 2.220(4)   |
| Yb(3)-O(37) | 2.218(4)   | Cd(6)-N(5)     | 2.269(5)   |
| Yb(3)-O(14) | 2.234(4)   | Cd(6)-O(35)    | 2.270(4)   |
| Yb(3)-O(12) | 2.238(4)   | Cd(6)-O(34)    | 2.271(4)   |
| Yb(3)-O(39) | 2.286(5)   | Cd(6)-O(12)    | 2.325(4)   |
| Yb(3)-O(36) | 2.297(4)   | Cd(6)-O(11)    | 2.498(4)   |
| Yb(3)-O(34) | 2.373(4)   | Cd(7)-N(7)     | 2.304(5)   |
| Yb(3)-N(6)  | 2.476(5)   | Cd(7)-O(38)    | 2.323(4)   |
| Yb(3)-O(13) | 2.584(4)   | Cd(7)-O(14)    | 2.324(4)   |
| Cd(1)-O(24) | 2.232(5)   | Cd(7)-O(43)    | 2.339(4)   |
| Cd(1)-N(1)  | 2.276(5)   | Cd(7)-O(41)    | 2.438(4)   |
| Cd(1)-O(2)  | 2.283(4)   | Cd(7)-O(40)    | 2.443(5)   |
| Cd(1)-O(20) | 2.292(4)   | Cd(7)-O(39)    | 2.460(5)   |
| Cd(1)-O(25) | 2.358(4)   | Cd(8)-O(16)    | 2.228(4)   |
| Cd(1)-O(21) | 2.613(5)   | Cd(8)-O(42)    | 2.280(4)   |
| Cd(1)-O(23) | 2.648(4)   | Cd(8)-O(45)    | 2.293(4)   |
| Cd(2)-O(4)  | 2.219(4)   | Cd(8)-O(15)    | 2.426(4)   |
| Cd(2)-O(22) | 2.261(5)   | Cd(8)-O(41)    | 2.430(4)   |
| Cd(2)-O(27) | 2.287(4)   | Cd(8)-Cl(1)    | 2.4541(15) |
| Cd(2)-O(47) | 2.306(6)   | Cd(9)-O(16)    | 2.236(4)   |
| Cd(2)-O(21) | 2.382(5)   | Cd(9)-N(8)     | 2.244(5)   |
| Cd(2)-O(3)  | 2.438(5)   | Cd(9)-O(45)    | 2.260(4)   |
| Cd(3)-N(2)  | 2.264(5)   | Cd(9)-O(44)    | 2.276(4)   |
| Cd(3)-O(27) | 2.265(4)   | Cd(9)-O(18)    | 2.322(4)   |
| Cd(3)-O(4)  | 2.272(4)   | Cd(9)-O(17)    | 2.509(4)   |
| Cd(3)-O(26) | 2 310(4)   |                |            |

Table S4. Selected Bond Lengths (Å) for 3.