Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Facile patterning of amorphous indium oxide thin films based on gel-like aqueous precursor for low-temperature, high-performance thin-film transistors

Yuzhi Li, Linfeng Lan,* Peng Xiao, Zhenguo Lin, Sheng Sun, Wei Song, Erlong Song, Peixiong Gao, Peng Zhang and Junbiao Peng*

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: lanlinfeng@scut.edu.cn, psjbpeng@scut.edu.cn

RMS roughness is defined as:

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

where x_i is surface height of every measured point, \bar{x} is average height, and n is the total number of measured points.

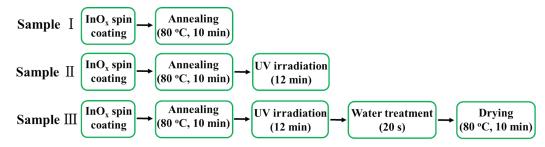


Figure S1. Preparation process-flow of samples.

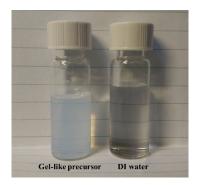
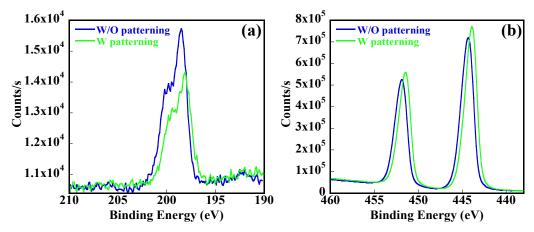
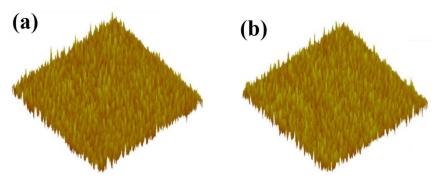
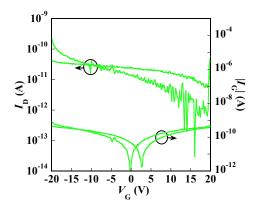
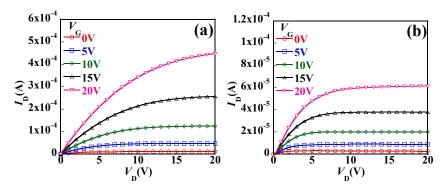
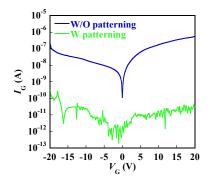
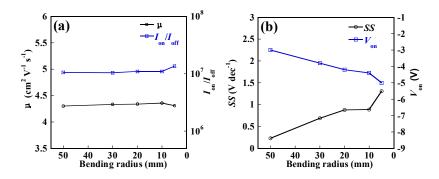



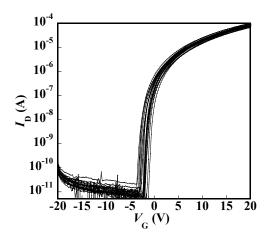
Figure S2. Optical image of gel-like aqueous precursor after filtering with 0.45 µm syringe filter.

Figure S3. (a) Cl 2p and (b) In 3d XPS spectra collected from InO_x films annealed at 280 °C with and without UV irradiation and water treatment.


Figure S4. AFM images (5 μ m \times 5 μ m) of InO $_x$ film (a) with and (b) without UV irradiation and water treatment.


Figure S5. Transfer curves of InO_x TFT without UV irradiation and water treatment post-annealed at 180 °C.


Figure S6. Output characteristics of InO_x TFTs (a) with and (b) without patterning, both devices were post-annealed at 280 °C.

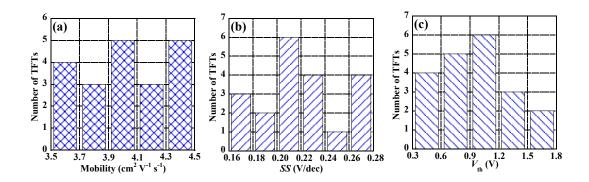

Figure S7. Gate leakage current (I_G) of InO_x TFTs with and without patterning, both devices were post-annealed at 280 °C.

Figure S8. (a) μ and $I_{\rm on}/I_{\rm off}$, (b) SS and $V_{\rm on}$ variations of InO_x TFT with different bending radius.

Figure S9. Transfer curves of 20 flexible InO_x TFTs.

Figure S10. Statistical distributions of (a) mobilities, (b) subthreshold slops, and (c) threshold voltages of 20 flexible InO_x TFTs.

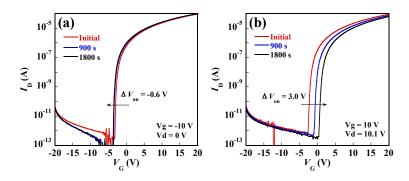


Figure S11. Variations of transfer curves under (a) negative and (b) positive gate bias stress.

Table S1. Comparison of this work to previous InO_x TFTs annealed at 200 °C

	Precursor	Mobility (cm ² V ⁻¹ s ⁻¹)	SS (V/dec)	$I_{ m on}/I_{ m off}$	$V_{\mathrm{th}}\left(\mathbf{V}\right)$
This work	$InCl_3$	3.3	0.3	2.6×10^{7}	2.9
Ref. 16	$In(NO_3)_3$	3.14	0.16	>109	~0
Ref. 25	$In(NO_3)_3$	0.03	-	2.2×10^{4}	1.5
Ref. 36	$In(NO_3)_3$	1.83	0.3	$\sim 10^8$	-1.9
Ref. 37	$In(NO_3)_3$	1.44	-	$\sim 10^6$	9.6