Supporting Information

Lanthanide Metal-Organic Frameworks Assembled from Fluorene-

based Ligand: Selective Sensing of Pb²⁺ and Fe³⁺ Ions

Liang Li,^a Qiang Chen,^a Zhigang Niu,^b Xinhui Zhou,^{*a} Tao Yang^a and Wei Huang^{*a,c}

^{a.} Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced

Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM),

Nanjing University of Posts & Telecommunications, Nanjing 210023, China

^{b.} College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

^{c.} Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China

	1	2	3	4
Empirical	$Sm_4C_{118}H_{138}N_4$	Eu ₄ C ₁₁₈ H ₁₃₈ N ₄	$Gd_4C_{118}H_{138}N_4$	Tb ₄ C ₁₁₈ H ₁₃₈ N ₄
formula	O ₄₃	O ₄₃	O ₄₃	O ₄₃
Formula weight	2901.72	2908.16	2929.32	2936.00
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/Å	11.4087(8)	11.4422(4)	11.4957(4)	11.4646(4)
b/Å	13.6584(8)	13.6499(5)	13.6804(4)	13.6288(5)
<i>c</i> /Å	24.023(1)	23.9769(8)	23.9693(8)	23.7978(7)
α/°	93.171(4)	92.915(3)	76.328(3)	92.929(3)
β/°	103.627(5)	103.671(3)	76.214(3)	103.548(3)
γ/°	112.671(6)	112.821(3)	66.917(3)	112.494(3)
V/Å ³	3312.0(3)	3311.2(2)	3324.5(2)	3298.6(2)
Ζ	1	1	1	1
ρ_{calc} g/cm ³	1.455	1.458	1.463	1.478
µ/mm⁻¹	1.827	1.949	2.049	2.198

Table S1. Crystallographic data for 1-4.

F(000)	1466.0	1470.0	1474.0	1478.0
Reflections collected	26109	26254	25537	26114
Independent reflections	11677	11675	11710	11622
R _{int} , R _{sigma}	0.0617, 0.0806	0.0494, 0.0617	0.0512, 0.0843	0.0307, 0.0427
GOF (F ²)	1.225	1.224	1.030	1.230
$[l>=2\sigma (l)]$	0.0899, 0.2464	0.1089, 0.2970	0.0455, 0.1085	0.0503, 0.1269
R_1^a , wR_2^b [all data]	0.1113, 0.2595	0.1221, 0.3022	0.0781, 0.1189	0.0617, 0.1314

 $R_1^a = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. $wR_2^b = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)]^{1/2}$.

Table S2. Selected bond lengths (Å) and angles (°) for ${f 1}.$

Sm1 - O4	2.354(8)	Sm2 - O6 ^{#4}	2.361(10)
Sm1 - 014	2.356(10)	Sm2 - O1 ^{#5}	2.395(10)
Sm1 - O3 ^{#1}	2.378(10)	Sm2 - 012	2.422(9)
Sm1 - 07	2.415(9)	Sm2 - 011	2.504(10)
Sm1 - 013	2.433(11)	Sm2 - 019	2.61(4)
Sm1 - 08	2.444(11)	01 - Sm2 ^{#6}	2.395(9)
Sm1 - O9	2.461(9)	O2 - Sm2 ^{#2}	2.343(11)
Sm1 - 010	2.463(9)	O3 - Sm1 ^{#1}	2.378(10)
Sm2 - O2 ^{#2}	2.343(11)	O5 - Sm2 ^{#7}	2.348(10)
Sm2 - 05 ^{#3}	2.348(10)	O6 - Sm2 ^{#4}	2.361(10)
Sm2 - O20	2.35(3)		
O4 - Sm1 - O14	79.1(3)	02 ^{#2} - Sm2 - 05 ^{#3}	76.8(4)
O4 - Sm1 - O3 ^{#1}	83.8(3)	02 ^{#2} - Sm2 - 020	157.4(7)
014 - Sm1 - 03 ^{#1}	79.4(4)	05 ^{#3} - Sm2 - 020	93.4(8)
04 - Sm1 - 07	76.2(3)	02 ^{#2} - Sm2 - 06 ^{#4}	73.6(4)
014 - Sm1 - 07	121.8(4)	05 ^{#3} - Sm2 - 06 ^{#4}	127.7(4)
03 ^{#1} - Sm1 - 07	146.4(3)	O20 - Sm2 - O6 ^{#4}	126.9(8)
04 - Sm1 - 013	77.0(3)	02 ^{#2} - Sm2 - 01 ^{#5}	123.6(4)
014 - Sm1 - 013	146.3(4)	05 ^{#3} - Sm2 - 01 ^{#5}	78.5(4)
03 ^{#1} - Sm1 - 013	74.7(4)	020 - Sm2 - 01 ^{#5}	72.9(7)
07 - Sm1 - 013	74.6(3)	06 ^{#4} - Sm2 - 01 ^{#5}	83.3(4)
04 - Sm1 - 08	96.0(3)	02 ^{#2} - Sm2 - 012	82.2(4)
014 - Sm1 - 08	78.4(4)	05 ^{#3} - Sm2 - 012	82.0(4)
03 ^{#1} - Sm1 - 08	157.4(4)	020 - Sm2 - 012	76.3(7)
07 - Sm1 - 08	53.4(3)	06 ^{#4} - Sm2 - 012	133.7(4)

013 - Sm1 - 08	127.3(3)	01 ^{#5} - Sm2 - 012	142.1(4)
O4 - Sm1 - O9	151.4(3)	02 ^{#2} - Sm2 - 011	87.7(4)
014 - Sm1 - 09	128.3(3)	05 ^{#3} - Sm2 - 011	134.4(3)
03 ^{#1} - Sm1 - 09	107.0(4)	020 - Sm2 - 011	84.8(7)
07 - Sm1 - O9	81.0(3)	06 ^{#4} - Sm2 - 011	86.3(4)
013 - Sm1 - 09	80.5(3)	01 ^{#5} - Sm2 - 011	142.0(4)
08 - Sm1 - O9	83.9(4)	012 - Sm2 - 011	53.3(3)
O4 - Sm1 - O10	155.0(3)	02 ^{#2} - Sm2 - 019	147.2(9)
014 - Sm1 - 010	79.9(3)	05 ^{#3} - Sm2 - 019	136.0(9)
03 ^{#1} - Sm1 - 010	79.0(3)	020 - Sm2 - 019	47.1(6)
07 - Sm1 - 010	127.1(3)	06 ^{#4} - Sm2 - 019	80.8(8)
013 - Sm1 - 010	115.2(3)	01 ^{#5} - Sm2 - 019	72.1(9)
08 - Sm1 - 010	93.0(3)	012 - Sm2 - 019	101.9(9)
09 - Sm1 - 010	52.8(3)	011 - Sm2 - 019	70.2(9)

#1 -x+1, -y+1, -z+1; #2 -x, -y, -z+1; #3 x+1, y, z+1; #4 -x, -y-1, -z+1; #5 x+1, y-1, z+1; #6 x-1, y+1, z-1; #7 x-1, y, z-1.

Eu1 - 014	2.340(16)	Eu2 - O1 ^{#5}	2.380(13)
Eu1 - O3 ^{#1}	2.357(14)	Eu2 - O20	2.40(4)
Eu1 - O4	2.361(12)	Eu2 - O12	2.406(14)
Eu1 - 07	2.406(13)	Eu2 - 011	2.490(15)
Eu1 - O10	2.435(12)	Eu2 - O19	2.55(5)
Eu1 - 013	2.444(14)	O1 - Eu2 ^{#6}	2.380(13)
Eu1 - 08	2.449(14)	O2 - Eu2 ^{#3}	2.329(14)
Eu1 - O9	2.455(13)	O3 - Eu1 ^{#1}	2.357(14)
Eu2 - O6 ^{#2}	2.326(14)	O5 - Eu2 ^{#7}	2.355(17)
Eu2 - O2 ^{#3}	2.329(14)	O6 - Eu2 ^{#2}	2.326(14)
Eu2 - O5 ^{#4}	2.355(17)		
014 - Eu1 - 03 ^{#1}	78.8(6)	06 ^{#2} - Eu2 - O2 ^{#3}	74.9(6)
014 - Eu1 - O4	77.9(5)	06 ^{#2} - Eu2 - 05 ^{#4}	128.6(6)
03 ^{#1} - Eu1 - O4	84.0(5)	O2 ^{#3} - Eu2 - O5 ^{#4}	76.5(6)
014 - Eu1 - 07	121.7(6)	06 ^{#2} - Eu2 - 01 ^{#5}	82.9(6)
03 ^{#1} - Eu1 - 07	147.1(5)	02 ^{#3} - Eu2 - 01 ^{#5}	124.2(6)
04 - Eu1 - 07	76.8(4)	05 ^{#4} - Eu2 - 01 ^{#5}	79.3(6)
014 - Eu1 - 010	79.7(5)	06 ^{#2} - Eu2 - O20	124.8(10)
03 ^{#1} - Eu1 - O10	79.0(5)	O2 ^{#3} - Eu2 - O20	157.4(10)
O4 - Eu1 - O10	154.0(5)	O5 ^{#4} - Eu2 - O20	95.2(11)
07 - Eu1 - O10	126.9(5)	01 ^{#5} - Eu2 - O20	73.4(10)
014 - Eu1 - 013	145.4(6)	06 ^{#2} - Eu2 - O12	133.3(5)

Table S3. Selected bond lengths (Å) and angles (°) for ${\bf 2}$.

03 ^{#1} - Eu1 - 013	75.0(6)	02 ^{#3} - Eu2 - 012	81.2(6)
O4 - Eu1 - O13	77.3(5)	05 ^{#4} - Eu2 - 012	81.8(5)
07 - Eu1 - O13	74.9(5)	01 ^{#5} - Eu2 - 012	142.7(6)
010 - Eu1 - 013	116.3(5)	O20 - Eu2 - O12	76.8(10)
014 - Eu1 - O8	79.2(6)	06 ^{#2} - Eu2 - O11	85.8(5)
O3 ^{#1} - Eu1 - O8	157.3(5)	02 ^{#3} - Eu2 - 011	87.9(6)
O4 - Eu1 - O8	97.0(5)	05 ^{#4} - Eu2 - 011	134.4(5)
07 - Eu1 - O8	53.4(4)	01 ^{#5} - Eu2 - 011	141.0(6)
O10 - Eu1 - O8	91.4(5)	O20 - Eu2 - O11	83.1(10)
013 - Eu1 - 08	127.5(5)	012 - Eu2 - 011	53.4(5)
O14 - Eu1 - O9	129.4(5)	06 ^{#2} - Eu2 - O19	77.7(11)
O3 ^{#1} - Eu1 - O9	106.4(5)	O2 ^{#3} - Eu2 - O19	146.3(12)
O4 - Eu1 - O9	151.8(5)	05 ^{#4} - Eu2 - 019	136.9(12)
07 - Eu1 - O9	81.1(5)	01 ^{#5} - Eu2 - 019	70.4(14)
O10 - Eu1 - O9	53.5(5)	O20 - Eu2 - O19	47.6(7)
013 - Eu1 - O9	80.3(5)	012 - Eu2 - 019	104.4(13)
08 - Eu1 - O9	83.3(5)	011 - Eu2 - 019	70.8(13)

#1 -x+1, -y+1, -z+1; #2 -x, -y-1, -z+1; #3 -x, -y, -z+1; #4 x+1, y, z+1; #5 x+1, y-1, z+1; #6 x-1, y+1, z-1; #7 x-1, y, z-1.

Table S4. Selected bond lengths (Å) and angles (°) for ${f 3}.$

Gd1 - 014	2.324(5)	Gd2 - O20	2.359(9)
Gd1 - O4	2.336(4)	Gd2 - 01 ^{#5}	2.381(5)
Gd1 - 03 ^{#1}	2.350(5)	Gd2 - 012	2.410(5)
Gd1 - 07	2.399(4)	Gd2 - 011	2.483(5)
Gd1 - 010	2.435(5)	Gd2 - 019	2.570(7)
Gd1 - 013	2.436(4)	O1 - Gd2 ^{#6}	2.381(5)
Gd1 - 09	2.437(5)	O2 - Gd2 ^{#2}	2.304(5)
Gd1 - 08	2.442(5)	O3 - Gd1 ^{#1}	2.350(5)
Gd2 - O2 ^{#2}	2.304(5)	O5 - Gd2 ^{#7}	2.334(5)
Gd2 - O6 ^{#3}	2.320(5)	O6 - Gd2 ^{#3}	2.320(5)
Gd2 - O5 ^{#4}	2.334(5)		
014 - Gd1 - O4	78.10(17)	02 ^{#2} - Gd2 - 06 ^{#3}	74.39(19)
014 - Gd1 - 03 ^{#1}	78.32(19)	02 ^{#2} - Gd2 - 05 ^{#4}	76.66(19)
04 - Gd1 - 03 ^{#1}	83.35(17)	06 ^{#3} - Gd2 - 05 ^{#4}	127.41(17
014 - Gd1 - 07	121.78(17	02 ^{#2} - Gd2 - O20	152.7(4)
04 - Gd1 - 07	77.05(16)	06 ^{#3} - Gd2 - O20	131.8(5)
03 ^{#1} - Gd1 - 07	147.31(15	05 ^{#4} - Gd2 - O20	88.8(5)
014 - Gd1 - 010	80.05(17)	02 ^{#2} - Gd2 - 01 ^{#5}	123.55(18
04 - Gd1 - 010	154.43(16	06 ^{#3} - Gd2 - 01 ^{#5}	82.96(19)

03 ^{#1} - Gd1 - O10	79.36(16)	05 ^{#4} - Gd2 - 01 ^{#5}	77.9(2)
07 - Gd1 - 010	126.45(16	O20 - Gd2 - O1 ^{#5}	74.2(2)
014 - Gd1 - 013	145.42(18	02 ^{#2} - Gd2 - 012	81.3(2)
04 - Gd1 - 013	77.41(17)	06 ^{#3} - Gd2 - 012	133.06(17
03 ^{#1} - Gd1 - 013	74.93(17)	05 ^{#4} - Gd2 - 012	83.09(18)
07 - Gd1 - 013	75.42(16)	O20 - Gd2 - O12	74.0(3)
010 - Gd1 - 013	115.44(17	01 ^{#5} - Gd2 - 012	143.06(19
014 - Gd1 - O9	129.76(16	02 ^{#2} - Gd2 - 011	87.80(19)
04 - Gd1 - O9	151.33(15	06 ^{#3} - Gd2 - 011	85.72(17)
03 ^{#1} - Gd1 - O9	106.69(19	05 ^{#4} - Gd2 - 011	135.7(2)
07 - Gd1 - O9	80.93(16)	020 - Gd2 - 011	86.8(3)
010 - Gd1 - O9	53.40(15)	01 ^{#5} - Gd2 - 011	141.7(2)
013 - Gd1 - O9	79.45(17)	012 - Gd2 - 011	53.41(18)
014 - Gd1 - 08	78.63(18)	02 ^{#2} - Gd2 - 019	146.4(4)
04 - Gd1 - 08	96.96(17)	06 ^{#3} - Gd2 - 019	78.2(4)
03 ^{#1} - Gd1 - 08	156.35(17	05 ^{#4} - Gd2 - 019	136.5(4)
07 - Gd1 - 08	53.65(14)	O20 - Gd2 - O19	54.4(5)
010 - Gd1 - 08	91.56(17)	01 ^{#5} - Gd2 - 019	70.8(3)
013 - Gd1 - 08	128.36(16	012 - Gd2 - 019	104.5(3)
09 - Gd1 - 08	84.32(19)	011 - Gd2 - 019	71.1(3)

#1 -x+1, -y+1, -z+1; #2 -x+2, -y, -z+1; #3 -x+2, -y-1, -z+1; #4 x, y, z-1; #5 x, y-1, z-1; #6 x, y+1, z+1; #7 x, y, z+1.

Table S5. Se	elected bond le	ngths (Å) and	d angles (°) for 4 .

Tb1 - O14	2.310(6)	Tb2 - O20	2.326(13)
Tb1 - O4	2.329(5)	Tb2 - O1 ^{#5}	2.354(6)
Tb1 - O3 ^{#1}	2.340(6)	Tb2 - O12	2.392(6)
Tb1 - O7	2.378(5)	Tb2 - O11	2.443(6)
Tb1 - O13	2.416(6)	Tb2 - O19	2.69(4)
Tb1 - O10	2.425(5)	O1 - Tb2 ^{#6}	2.354(6)
Tb1 - O9	2.425(6)	O2 - Tb2 ^{#3}	2.293(6)
Tb1 - O8	2.435(6)	O3 - Tb1 ^{#1}	2.340(6)
Tb2 - O6 ^{#2}	2.290(6)	O5 - Tb2 ^{#7}	2.297(7)
Tb2 - O2 ^{#3}	2.293(6)	O6 - Tb2 ^{#2}	2.290(6)
Tb2 - O5 ^{#4}	2.297(7)		
O14 - Tb1 - O4	77.9(2)	O6 ^{#2} - Tb2 - O2 ^{#3}	75.5(2)
O14 - Tb1 - O3 ^{#1}	79.0(2)	O6 ^{#2} - Tb2 - O5 ^{#4}	129.7(2)
O4 - Tb1 - O3 ^{#1}	84.93(19)	O2 ^{#3} - Tb2 - O5 ^{#4}	77.6(3)
O14 - Tb1 - O7	122.2(2)	O6 ^{#2} - Tb2 - O20	123.6(5)
04 - Tb1 - 07	77.09(19)	O2 ^{#3} - Tb2 - O20	157.0(4)

03 ^{#1} - Tb1 - 07	147.5(2)	O5 ^{#4} - Tb2 - O20	95.5(5)
014 - Tb1 - 013	145.1(2)	06 ^{#2} - Tb2 - O1 ^{#5}	82.9(2)
O4 - Tb1 - O13	77.3(2)	02 ^{#3} - Tb2 - 01 ^{#5}	125.6(3)
03 ^{#1} - Tb1 - 013	74.7(2)	05 ^{#4} - Tb2 - 01 ^{#5}	79.4(3)
07 - Tb1 - O13	75.0(2)	O20 - Tb2 - O1 ^{#5}	73.3(4)
O14 - Tb1 - O10	79.2(2)	06 ^{#2} - Tb2 - O12	132.8(2)
O4 - Tb1 - O10	154.1(2)	02 ^{#3} - Tb2 - O12	81.9(3)
O3 ^{#1} - Tb1 - O10	78.8(2)	O5 ^{#4} - Tb2 - O12	83.2(2)
07 - Tb1 - O10	126.2(2)	O20 - Tb2 - O12	75.4(4)
013 - Tb1 - 010	116.9(2)	01 ^{#5} - Tb2 - O12	142.3(3)
O14 - Tb1 - O9	129.8(2)	06 ^{#2} - Tb2 - O11	84.2(2)
O4 - Tb1 - O9	151.5(2)	02 ^{#3} - Tb2 - O11	88.3(3)
O3 ^{#1} - Tb1 - O9	105.0(2)	O5 ^{#4} - Tb2 - O11	136.4(2)
07 - Tb1 - O9	80.93(19)	O20 - Tb2 - O11	81.7(4)
013 - Tb1 - O9	79.7(2)	01 ^{#5} - Tb2 - 011	138.7(3)
O10 - Tb1 - O9	53.85(19)	012 - Tb2 - 011	53.8(2)
O14 - Tb1 - O8	78.7(2)	06 ^{#2} - Tb2 - O19	77.9(6)
O4 - Tb1 - O8	97.3(2)	02 ^{#3} - Tb2 - O19	146.8(7)
03 ^{#1} - Tb1 - 08	156.6(2)	O5 ^{#4} - Tb2 - O19	135.4(7)
07 - Tb1 - O8	54.24(19)	O20 - Tb2 - O19	46.0(5)
013 - Tb1 - O8	128.5(2)	01 ^{#5} - Tb2 - O19	69.4(8)
O10 - Tb1 - O8	90.1(2)	012 - Tb2 - 019	102.5(8)
O9 - Tb1 - O8	84.2(2)	011 - Tb2 - 019	69.6(8)

#1 -x+1, -y+1, -z+1; #2 -x, -y-1, -z+1; #3 -x, -y, -z+1; #4 x+1, y, z+1; #5 x+1, y-1, z+1; #6 x-1, y+1, z-1; #7 x-1, y, z-1

Fig. S1 View of the asymmetric units of **1**, **2** and **4** with the thermal ellipsoids drawn at the 50% probability level.

Fig. S2 View of coordination geometries of Gd1 and Gd2 ions (a), SBUs (b) and ligand modes (c) in **3**.

Fig. S3. Thermogravimetric curves of 1-4.

Fig. S4. The simulated and as-synthesized powder X-ray diffraction patterns of 1-4.

Fig. S5. The IR spectra of 1-4.

Fig. S6 Solid-state emission spectra for 1-4 at room temperature.

Fig. S7. The fluorescence decay curve for 2 in solid state.

Fig. S8. The excitation spectrum of 2 in Tris-HCl.

Fig. S9. The fluorescence decay curve for 2 in Tris-HCl and is 293 μ s.

Fig. S10. The fluorescence decay curve for 2 in Pb²⁺ solution (0.1 mM).

Fig. S11. Emission spectra of 2 in Fe^{3+} solution in the concentration of 0-0.1 mM.

Fig. S12. The fluorescence decay curves for 2 in Fe^{3+} solution.

Fig. S13. The excitation spectrum of 4 in Tris-HCl.

Fig. S14. Emission spectra of **4** in $Eu(NO_3)_3$ solution.

Fig. S15. Emission spectra of 4 in $Sm(NO_3)_3$ solution.