Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Amine Vapor Responsive Lanthanide Complex Entrapment: Control of Ligand-to-Metal and Metal-to-Metal Energy Transfer

Peng Li, and Huanrong Li*

School of Chemical Engineering and Technology, Hebei University of Technology,

Guang Rong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.

E-mail: lihuanrong@hebut.edu.cn

1. Spectroscopic and time resolved measurements

Figure S1. a) Schematic representation of ZL framework, b) Molecular structure of acac,

Figure S2. XRD pattern of a) nanozeolite (NZL) (black line) and b) $Eu_4Tb_6(acac)_n@NZL$ (red line). c) $Eu_4Tb_6(acac)_n@NZL$ upon exposure to Et_3N .

Figure S3. SEM images of (a) nanozeolite (NZL) and b) Eu₄Tb₆(acac)_n@NZL.

Figure S4. Excitation spectra of $Eu_4Tb_6(acac)_n@NZL$ monitored at 544 nm (black line) and monitored at 612 nm (red line), emission spectrum (blue line) of $Eu_4Tb_6(acac)_n@NZL$ excitated at 310 nm.

Figure S5. Excitation spectra of $Eu_4Tb_6(acac)_n@NZL$ before (black line) and after exposure to n-BuNH₂ (red line), Benzylamine (blue line), a) monitored at 612 nm, b) monitored at 544 nm; c) Emission spectra of $Eu_4Tb_6(acac)_n@NZL$ before (black line) and after exposure to n-BuNH₂ (red line), Benzylamine (blue line) excited at 310 nm.

Figure S6. Excitation spectra of $Eu_4Tb_6(acac)_n@NZL$ before (black line) and after exposure to N-methylaniline (orange line) a) monitored at 612 nm, b) monitored at 544 nm; c) Emission spectra of $Eu_4Tb_6(acac)_n@NZL$ before (black line) and after exposure to N-methylaniline (orange line) excited at 310 nm.

Figure S7. FTIR spectra of (a) $Eu_4Tb_6(acac)_n@NZL$ (black line), (b) $Eu_4Tb_6(acac)_n@NZL$ upon exposure to Et_3N (red line).

Figure S8. The compared decay curves of $Tb^{3+}(acac)_n@NZL$ (black line) and $Eu_4Tb_6(acac)_n@NZL$ (red line) using an excitation of 310 nm and monitored at 544 nm upon exposure to a)Et₃N, b) n-BuNH₂, c) Benzylamine, d) t-BuNH₂ and e) En vapor.

Figure S9. The compared decay curves of $Eu^{3+}(acac)_n @NZL$ (black line) and $Eu_4Tb_6(acac)_n @NZL$ (red line) using an excitation of 310 nm and monitored at 612 nm upon exposure to a)Et₃N, b) n-BuNH₂, c) Benzylamine, d) t-BuNH₂ and e) En vapor.

Figure S10. Digital photographs of $Eu_4Tb_6(acac)_n@NZL$ upon contact with the equilibrated vapor of Et_3N for varied periods of time under near UV irradiation at 302 nm.

Figure S11. Emission spectrum of $Eu_4Tb_6(acac)_n@NZL$ upon contact with the equilibrated vapor of Et_3N for 30 s; Inset: Digital photographsof $Eu_4Tb_6(acac)_n@NZL$ upon contact with the equilibrated vapor of Et_3N for 30 s under near UV irradiation at 302 nm.

Table S1	The ec	uilibrated	vapor	pressure	of	amine	solve	ents
	1110 00	amoratea	Jupor	pressure	01	amme	50110	JIICO.

	Et ₃ N	t-BuNH ₂	n-BuNH ₂	En	Benzyla mine	N-methy laniline	aniline
Equilibrated vapor pressure(KPa)	9.06	49.54	12.29	1.65	0.09	0.06	0.09