Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Determination of the microstructure, energy levels and magnetic dipole transition mechanism for Tm³⁺ doped Yttrium aluminum borate

Meng Ju,^{ab} Xiao-Yu Kuang,^{a*} Cheng Lu,^{bc*} Hui Li,^d Jing-Jing Wang,^a Chuan-Zhao Zhang^a

Yong-Sheng Zhu^b and Yau-Yuen Yeung^{e*}

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

^b Department of Physics, Nanyang Normal University, Nanyang 473061, China

- ^c Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, USA
- ^d Laboratoiré Aime Cotton, CNRS, Université Paris-Sud, ENS Cachan, Orsay 91405, France
- ^e Department of Science and Environmental Studies, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, NT, Hong Kong, China

*Correspondence author. E-mail: <u>scu_kuang@163.com</u> (Xiao-Yu Kuang), <u>lucheng@calypso.cn</u> (Cheng Lu) and <u>yyyeung@ied.edu.hk</u> (Yau Yuen Yeung)

Fig. S1. Coordination structures the optimized low-lying Tm:YAB. The yellow, red, gray, blue and green spheres represent B, O, Al, Y and Tm atoms, respectively.

Fig. S2. The calculated energy levels of the free ion Tm^{3+} and Tm^{3+} in YAB crystal.

Tm-prism	Theor.	Expt. a	Al octahedron	Theor.	Expt. a	B ₁ triangle	Theor.	Expt. a
Tm-O(6)	2.338		$Al-O_1(2)$	1.876	1.837	$B_1-O_1(3)$	1.391	1.383
$O_1 - O_2(6)$	3.297		Al-O ₂ (2)	1.935	1.922	$O_1 - O_2(3)$	2.409	2.396
$O_1 - O'_1(3)$	2.771		Al-O ₃ (2)	1.949	1.938			
Aver.	2.808	—	Aver.	1.920	1.899	Aver.	1.900	—
Y-prism			_			B ₂ triangle		
Y-O(6)	2.337	2.321	$O_1 - O_2(2)$	2.440	2.421	$B_2-O_1(1)$	1.369	1.367
$O_1 - O_2(6)$	3.290	3.256	$O_1 - O_3(2)$	2.640	2.706	$B_2-O_2(1)$	1.374	1.373
$O_1 - O'_1(3)$	2.777	2.776	$O_2 - O_3(2)$	2.811	2.706	$B_2-O_3(1)$	1.395	1.371
			$O_1 - O'_1(2)$	2.838	2.767	$O_1 - O_2(1)$	2.434	2.432
			$O_2 - O'_3(2)$	2.733	2.608	$O_2 - O_3(1)$	2.362	2.345
			$O_1 - O'_2(1)$	2.854	2.839	$O_1 - O_3(1)$	2.367	2.374
			$O_3-O'_3(1)$	2.723	2.784			
Aver.	2.806		Aver.	2.708	2.681	Aver.	1.884	

Table S1. Interatomic distances (Å) in the ground state structure of Tm:YAB. Available experimental results of YAB are also listed for comparision.

^aRef. [1].

Table S2. Structural parameters a, b and c, unit-cell volume, relative energies for the optimized YAB and low-lying Tm:YAB.

	Space group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	$\Delta E (\mathrm{eV})$
YAB	R32	9.3542	9.3542	7.2673	550.697	
Tm:YAB	P321	9.3593	9.3593	7.2802	552.282	0
Isomer (a)	P321	9.3301	9.3301	7.2488	546.542	0.172
Isomer (b)	P321	9.4154	9.4154	7.3002	560.456	0.307
Isomer (c)	<i>C</i> 2	16.3005	9.4486	7.4192	1142.65	0.378
Isomer (d)	<i>C</i> 2	16.3307	9.4703	7.4483	1151.91	0.549

$^{2s+1}L_J$	$E_{\rm obs}{}^{\rm a}$	$E_{\rm calc}$
$^{3}H_{6}$	0	0
${}^{3}F_{4}$	5634	5634
$^{3}\text{H}_{5}$	8216	8216
$^{3}\mathrm{H}_{4}$	12547	12548
³ F ₃	14410	14410
${}^{3}F_{2}$	15089	15089
${}^{1}G_{4}$	21174	21174
${}^{1}D_{2}$	28163	28163
${}^{1}I_{6}$	35329	35329
${}^{3}P_{0}$	—	35709
${}^{3}P_{1}$	—	36801
${}^{3}P_{2}$	38532	38532
${}^{1}S_{0}$	—	75262

Table S3. The calculated energy levels (all in cm^{-1}) of free-ion Tm^{3+} .

^aRef. [2].

Table S4. The calculated crystal field eigenvectors of the ground state ${}^{3}H_{6}$ for Tm³⁺ in YAB.

State No.	Statevector $ ^{2s+1}L_J M_J >$
1	$0.88 ^{3}H_{6} 0 > + 0.32 ^{3}H_{6} - 3 > - 0.32 ^{3}H_{6} 3 >$
2	$0.89 ^{3}H_{6}-1>-0.36 ^{3}H_{6}2>+0.27 ^{3}H_{6}-4>$
4	$-0.89 ^{3}H_{6} 2> + 0.24 ^{3}H_{6} 5> - 0.37 ^{3}H_{6} - 1>$
6	$0.56 ^{3}H_{6}-3>-0.56 ^{3}H_{6}-3>-0.42 ^{3}H_{6}-0>+0.30 ^{3}H_{6}-6>+0.30 ^{3}H$
7	$-\ 0.59 ^{3}H_{6}\ 3>-\ 0.59 ^{3}H_{6}\ -3>+\ 0.38 ^{3}H_{6}\ 6>-\ 0.38 ^{3}H_{6}\ -6>$
8	$0.64 ^{3}H_{6} - 6 \geq + 0.64 H_{6} 6 \geq + 0.27 H_{6} 3 \geq - 0.27 H_{6} - 3 \geq + 0.19 ^{3}H_{6} 0 \geq -0.27 H_{6} - 0.27 H_{6} $
9	$0.59 ^{3}H_{6} \ 6> - \ 0.59 ^{3}H_{6} \ -6> + \ 0.38 ^{3}H_{6} \ 3> + \ 0.38 ^{3}H_{6} \ -3>$
10	$-0.96 ^{3}H_{6}-4>+0.25 ^{3}H_{6}-1>-0.12 ^{3}H_{6}2>$
12	$0.97 ^{3}H_{6} = 0.22 ^{3}H_{6} = 2$

2S+1I (Stal)?	$\mathbf{C}' \mathbf{I}' \mathbf{I}' (\mathbf{C}_{t_{\mathbf{C}}})$	1 (2000)	<i>(</i> , <i>(</i> , -1)	$D \sim 10^{\circ}$
$\frac{-2^{-1}L_J(\text{Sta.})^{\alpha}}{311}$	$\frac{SLJ}{(Sta.)}$	<u>λ (nm)</u>	$\frac{A_{MD}(S^{-1})}{5.00}$	$\Gamma_{MD} \times 10^{\circ}$
$^{3}H_{5}(23)$	$^{5}H_{6}(2)$	1221	5.88	15.14
$^{3}H_{5}(24)$		121/	10.90	24.18
³ H ₅ (26)		1204	2.96	6.43
³ H ₅ (24)	${}^{3}\mathrm{H}_{6}(4)$	1228	8.19	18.52
$^{3}\text{H}_{5}(26)$		1215	9.58	20.20
³ H ₅ (26)	$^{3}\mathrm{H}_{6}(6)$	1227	11.23	25.38
${}^{3}\mathrm{H}_{5}(28)$	0 (-)	1208	6.85	15.00
$^{3}\text{H}_{2}(26)$	$^{3}H_{c}(7)$	1232	11.00	25.04
3 H ₂ (20)	$\Pi_{6}(7)$	1232	6.72	14 74
$^{3}H_{5}(30)$		1210	2.30	5.00
³ H ₅ (30)	${}^{3}\mathrm{H}_{6}(8)$	1220	18.88	42.12
³ H ₅ (29)	³ H ₄ (9)	1226	2.90	6 52
${}^{3}\text{H}_{5}(30)$	••0 (7)	1220	17.62	39.36
$^{3}\text{H}_{c}(28)$	$^{3}\text{H}_{c}(10)$	1234	6.96	15 88
$^{3}\text{H}_{2}(29)$	116 (10)	1234	7.63	17.32
$^{3}H_{c}(32)$		1231	6.92	15 35
115 (32)		141/	0.72	10.00
$^{3}\text{H}_{5}(30)$	$^{3}\text{H}_{6}(12)$	1238	3.98	9.15
$^{3}\text{H}_{5}(32)$		1229	18.93	42.87
$^{3}\text{H}_{4}(39)$	${}^{3}\mathrm{F}_{4}(14)$	1407	2.85	8.46
${}^{3}F_{3}(43)$		1136	4.42	8.56
${}^{3}F_{3}(44)$		1130	6.34	12.14
${}^{3}F_{3}(48)$		1124	2.38	4.52
³ H₄ (35)	${}^{3}\mathrm{F}_{4}(16)$	1445	6.17	19.31
${}^{3}F_{3}(44)$	- 4 (- 2)	1131	3.84	7.37
${}^{3}F_{3}(47)$		1126	4 18	7 94
${}^{3}F_{3}(48)$		1125	4.11	7.79
³ H ₄ (37)	³ F₄ (17)	1454	2.61	8 26
${}^{3}F_{3}(43)$	-4(-')	1155	3 01	6.02
${}^{3}F_{3}(45)$		1145	2.34	4.61
${}^{3}F_{3}(47)$		1143	4.00	7.81
${}^{3}F_{3}(48)$		1142	5.37	10.50
³ H ₄ (39)	${}^{3}\mathrm{F}_{4}(19)$	1445	2,82	8 81
${}^{3}F_{3}(43)$	• 4 (•)	1160	4 43	8 95
${}^{3}F_{3}(45)$		1151	10.91	21.67
³ H ₄ (37)	³ F₄ (21)	1472	2 17	7.06
${}^{3}F_{2}(44)$	• 4 (2•)	1157	7 15	14 34
${}^{3}F_{2}(44)$		1154	2 61	5 22
÷ , (' ' /		1101	2.01	

Table S5. The calculated spontaneous emission rates and MD oscillator strengths for transitions $\psi(SLJ\Gamma_i) \rightarrow \psi(S'L'J'\Gamma'_i)$ between different levels of Tm³⁺ in YAB.

${}^{3}H_{4} (37) \\ {}^{3}F_{3} (42) \\ {}^{3}F_{3} (45) \\ {}^{3}F_{3} (47) \\ {}^{3}F_{3} (48) $	³ F ₄ (22)	1483 1447 1163 1161 1160	3.63 2.35 9.10 3.40 2.11	11.97 7.38 18.44 6.86 4.25
${}^{1}G_{4} (55) \\ {}^{1}G_{4} (56) \\ {}^{1}G_{4} (58) \\ {}^{1}I_{6} (75) \\ {}^{1}I_{6} (76) \end{cases}$	³ H ₅ (23)	782 778 766 374 373	16.92 9.52 5.00 2.82 3.30	15.50 8.65 4.40 0.60 0.70
${}^{1}G_{4} (55) \\ {}^{1}G_{4} (56) \\ {}^{1}G_{4} (58) \\ {}^{1}G_{4} (61) \\ {}^{1}I_{6} (76) $	³ H ₅ (24)	784 780 768 762 374	10.53 12.94 4.42 3.21 2.10	9.70 11.81 3.91 2.80 0.44
${}^{1}G_{4} (56)$ ${}^{1}G_{4} (58)$ ${}^{1}G_{4} (61)$	³ H ₅ (26)	785 773 767	15.20 3.79 10.34	14.05 3.40 9.13
${}^{1}G_{4} (61) \\ {}^{1}G_{4} (63) \\ {}^{1}I_{6} (69) \\ {}^{1}I_{6} (70) $	³ H ₅ (28)	775 769 381 380	17.65 11.06 2.17 3.42	15.90 9.80 0.47 0.74
${}^{1}G_{4} (58) \\ {}^{1}G_{4} (60) \\ {}^{1}G_{4} (61) \\ {}^{1}I_{6} (74)$	³ H ₅ (29)	782 778 776 380	10.05 12.38 10.59 2.32	9.22 11.22 9.57 0.50
${}^{1}G_{4} (56) \\ {}^{1}G_{4} (58) \\ {}^{1}G_{4} (61) \\ {}^{1}I_{6} (81)$	³ H ₅ (30)	797 784 778 371	5.36 17.58 9.01 2.76	5.10 16.21 8.18 0.57
${}^{1}G_{4} (58) \\ {}^{1}G_{4} (60) \\ {}^{1}G_{4} (63) \\ {}^{1}I_{6} (78) $	³ H ₅ (32)	788 783 776 377	5.28 13.16 13.01 3.45	4.92 12.11 11.74 0.74
${}^{1}G_{4}(56)$	³ H ₄ (34)	1178	7.52	15.65
${}^{1}G_{4} (55)$ ${}^{1}G_{4} (61)$	³ H ₄ (35)	1187 1139	4.06 3.40	8.56 6.60
${}^{1}G_{4} (58)$ ${}^{1}G_{4} (63)$	³ H ₄ (37)	1164 1137	3.33 2.44	6.76 4.73
${}^{1}G_{4} (58)$ ${}^{1}G_{4} (61)$	³ H ₄ (39)	1176 1162	2.20 3.30	4.55 4.13
${}^{1}G_{4} (60)$ ${}^{1}G_{4} (61)$	³ H ₄ (41)	1169 1166	3.23 6.09	6.62 12.41
${}^{1}G_{4}(58)$	³ H ₄ (42)	1187	4.56	9.64

10
11
32
01
02
81
68
30
67
32
42
24
46
92
35
36
90
18
74
57
48
45
02
23
29
<u>-</u> 2
43
23
82
67
00
81
98
89
17
67
74
02
51
16
59
28
06
16

Equation (S1): [3-4]

$$A_{ED(SLJ\to S'L'J')} = \frac{16\pi^3 e^2}{3\varepsilon_0 h c^3} \frac{v^3}{(2J+1)} \chi_{ED} \sum_{\lambda=2,4,6} \Omega_{(\lambda)} \left| \left\langle l^N SLJ \left\| U^{(\lambda)} \right\| l^N S'L'J' \right\rangle \right|^2$$
(S1)

where v is the transition frequency, n is the refractive index and χ_{ED} is the local-field correction for ED induced transitions with the form of $(n^2+1)^2/(9n)$ and $n(n^2+1)^2/9$ for absorption and emission transition, respectively. The Judd-Ofelt intensity parameters $\Omega_{(\lambda)}$ should be summed over $\lambda=2,4,6$ for a product with the even-rank reduced matrix elements of the $U^{(\lambda)}$ tensor operator.

Equation (S2): [3-4]

$$A_{MD} = \frac{\pi h e^2}{3\varepsilon_0 c^5 m_e^2} \frac{V^3}{g} \chi_{MD} \left| \left\langle l^N \psi \right| \left| L + g_e S \right| \left| l^N \psi' \right\rangle \right|^2$$
(S2)

where $g_e = 2.00232$ is the gyromagnetic ratio of the electron and g is the degeneracy of the initial level. χ_{MD} is the local-field correction for MD induced transitions with the form of n and n³ for the absorption and emission transition, respectively. ψ and ψ' are the statevectors for the initial and terminating levels for the $\psi \rightarrow \psi'$ transition, respectively. For transitions between J-multiplets, the statevector takes the form of $\psi(SLJ)$ with g = (2J+1) while for transitions between crystal field levels, it takes the form of $\psi(SLJ\Gamma_i)$.

Equation (S3) for the radiative lifetime: [3-4]

$$\tau_{SLJ} = \frac{1}{\sum_{SLJ'} \left(A_{ED(SLJ \to S'L'J')} + A_{MD(SLJ \to S'L'J')} \right)}$$
(S3)

Equation (S4) for the branching ratio: [3-4]

$$\beta_{(SLJ\to S'L'J')} = \tau_{SLJ} \times [A_{ED(SLJ\to S'L'J')} + A_{MD(SLJ\to S'L'J')}]$$
(S4)

Equation (S5): [3-4]

$$P_{MD} = \frac{h\nu}{6m_e c^2} \frac{n}{(2J+1)} \left| \left\langle l^N SLJ \right\| L + g_e S \left\| l^N SLJ' \right\rangle \right|^2$$
(S5)

References

- 1 E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov and N. V. Belov, J. Struct. Chem., 1981, 22, 476-478.
- 2 A. Meftah, J. F. Wyart, N. Champion and W. U. L. Tchang-Brillet, *Eur. Phys. J. D*, 2007, 44, 35-45.
- 3 C. G. Walrand, L. Fluyt and A. Ceulemans, J. Chem. Phys., 1991, 95, 3099-3106.
- 4 M. P. Hehlen, M. G. Brik and K. W. Kramer, J. Lumin., 2013, 136, 221-239.