Supporting Information for the manuscript

The Pivotal Step of Nanoparticle Functionalization for the Preparation of Functional and Magnetic Hybrid Opal Films

D. Scheid^a, D. Stock^a, T. Winter^a, T. Gutmann^{b,*}, C. Dietz^{c,d}, and M. Gallei^{a,*}

Fig. S1 Modification of silica surface with TMES avoiding inter-particle condensation reactions.

Fig. S2. Zeta potential of initial hybrid particles and TMES-modified particles.

Fig. S3. TGA measurement of bare polymer/silica particles and particles modified with TMES.

Fig. S4. ¹³C CP MAS spectra measured at 11 kHz spinning with a contact time of 2 ms of a) sample TMES, and b) sample Stöber. Note: Signals marked with # and * are spinning sidebands.

Fig. S5. Structural assignment of Tn groups (derived from Albert et al.).²⁵

Table S1. T₁ relaxation times for ²⁹Si extracted by biexponential fit of the data from saturation recovery experiments.

Sample Name	T1 short	T1 long
Sample TMES	15.4 s	134.4 s
Sample Stöber	1.9 s	62.1 s
Sample Nanorattle 500°C	1.5 s	31.5 s

Fig. S6. 29 Si MAS spectra measured at 8 kHz spinning for quantification of Q_n groups for sample TMES measured with d1=412s and sample Stöber with d1=300s

Fig. S7. Dispersions of the pristine particles obtained from the Stöber process (left) and particles treated with TMES (right) in water (after thermal treatment for 5h at 500 °C) are compared before (A) and after

Fig. S8. TEM image of the particle dispersions in water on carbon-coated copper grids after drying using the drop-cast method for the initial polymer/silica particle sample (A), after thermal treatment 5h, 500°C (B) and TMES modified particles after thermal treatment (C).

Fig. S9. TEM image of TMES-modified silica particles after thermal treatment and dispersing in water on carbon-coated copper grid after drying using the drop-cast method.

Fig. S11. ²⁹Si MAS spectra measured at different spinning rates employing a recycle delay of 2.5s and 5400 scans for the 8 kHz respectively 1536 scans for the 6 and the 10 kHz spectra.

Fig. S12. Reflection spectra of elastomeric opal film dependent on strain $\boldsymbol{\epsilon}.$

Table S2. Calculation of reflected wave lengths λ_{111} and relative reflectivity R for various opal film materials and particle diameter.

material	particle diameter	reflected wave length	relative reflectivity
Opal film PE/SiO₂	670 nm	1430 nm	0.005
Opal filmPE/SiO ₂	350 nm	745 nm	0.005
Opal film PEcoPBzMA/SiO ₂	350 nm	755 nm	0.071
Inversopal SiO ₂ /air	350 nm	628 nm	0.998

The reflected wave length λ_{111} was calculated according to the following equation^1:

$$\lambda_{111} = 2d \sqrt{\frac{3}{2}} n_{eff} sin\delta$$

The relative reflectivity R is calculated according to the following equation²:

$$R = \left[\frac{\left(n_0 - n_s \left(\frac{n_1}{n_2}\right)^{2N}\right)^2}{\left(n_0 + n_s \left(\frac{n_1}{n_2}\right)^{2N}\right)^2} \right]^2$$

Fig. S13. SEM image of polymer film surface (A) and cross section (B) of elastomeric polymer film containing yolk/shell particles.

Fig. S14. SEM topography image of double inverse opal film.

References

- 1. L. Gonzalez-Urbina, K. Baert, B. Kolaric, J. Perez-Moreno and K. Clays, *Chemical reviews*, 2012, **112**, 2268-2285.
- 2. J. Ge and Y. Yin, *Angew. Chem. Int. Ed. Engl.*, 2011, **50**, 1492-1522.