Effect of base sequence context on the conformational heterogeneity of

aristolactam-I adducted DNA: structural and energetic insights into sequence-

dependent repair and mutagenicity

Preetleen Kathuria,¹ Purshotam Sharma^{1,2} and Stacey D. Wetmore^{1*}

¹Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West,

Lethbridge, Alberta Canada T1K 3M4

²Centre for Computational Sciences, Central University of Punjab, Bathinda, Punjab India 151001

Supporting Information

(13 Pages)

Figures S1-S3. Radar plots for the probability distributions of χ , θ and ϕ				
Table S1. RMSD of all heavy atoms in the lesion site trimer in the base-displaced intercalated adducted				
DNA conformations during 20 and 320 ns MD simulations in the CXC sequence context				
Table S2. Backbone RMSD for all adducted DNA conformations in different sequence				
contexts				
Table S3. The hydrogen-bonding occupancies in the trimers composed of the damaged base pair and the				
3' and 5'-flanking base pairs in different sequence contexts				
Table S4. Pseudostep parameters and minor groove width for all adducted DNA conformers in different				
sequence contexts				
Table S5. Interaction energies between the damaged base and its opposing thymine for different base-				
displaced intercalated conformations of ALI-N ⁶ -dA adducted DNAS13				

Figure S1. Radar plots for the probability distributions of χ (blue), θ (red) and φ (green) for *anti* (a, b and c) or *syn* (d, e and f) ALI-N⁶-dA in the GXG sequence in the base-displaced intercalated (a and d), 5'- intercalated (b and e) or 3'-intercalated (c and f) adducted DNA conformations.

Figure S2. Radar plots for the probability distributions of χ (blue), θ (red) and φ (green) for *anti* (a, b and c) or *syn* (d, e and f) ALI-N⁶-dA in the CXG sequence in the base-displaced intercalated (a and d), 5'- intercalated (b and e) or 3'-intercalated (c and f) adducted DNA conformations.

Figure S3. Radar plots for the probability distributions of χ (blue), θ (red) and ϕ (green) for *anti* (a, b and c) or *syn* (d, e and f) ALI-N⁶-dA in the GXC sequence in the base-displaced intercalated (a and d), 5'- intercalated (b and e) or 3'-intercalated (c and f) adducted DNA conformations.

Table S1: RMSD of all heavy atoms in the trimer containing the damaged base pair and the 5' and 3'-flanking bases in the base-displaced intercalated adducted DNA conformations during 20 and 320 ns simulations in the CXC sequence context.

Conformer	RMSD (Å)	
	20 ns	320 ns
anti base-displaced intercalated	0.82±0.2	0.96±0.3
syn base-displaced intercalated	1.09±0.2	1.21±0.3

Sequence Context	Conformers	RMSD (Å)
GXG	anti base-displaced	1.82±0.33
	anti 5'-intercalated	4.11±1.51
	anti 3'-intercalated	3.33±0.63
	syn base-displaced	2.05 ±0.37
	syn 5'-intercalated	3.73 ±0.77
	syn 3'-intercalated	2.21±0.53
CXG	anti base-displaced	1.90±0.39
	anti 5'-intercalated	2.24±0.46
	anti 3'-intercalated	3.11±0.75
	syn base-displaced	2.19±0.46
	syn 5'-intercalated	2.67±0.47
	syn 3'-intercalated	2.21±0.55
GXC	anti base-displaced	2.04 ±0.40
	anti 5'-intercalated	2.94±0.91
	anti 3'-intercalated	2.71±0.58
	syn base-displaced	2.04±0.41
	syn 5'-intercalated	3.01±0.76
	syn 3'-intercalated	2.89±0.72

Table S2: Backbone RMSD for each adducted DNA conformation in different sequence contexts.

Table S3: The hydrogen-bonding occupancies in the trimers composed of the damaged base pair and the 3' and 5'–flanking base pairs in different sequence contexts.^{*a,b*}

Sequence	Conformation	Base Pair	H-Bond	Occupancy (%)
Context				
		5'–C(5):G(18)	O2●●H2–N2	99.9
			N3•••H1–N1	99.9
СХС	anti base-displaced		N4–H4●●O6	98.9
		3'–C(7):G(16)	O2●●H2–N2	99.9
			N3•••H1–N1	99.9
			N4–H4∙∙•O6	98.2
	syn base-displaced	5'-C(5):G(18)	O2●●H2–N2	99.7
			N3•••H1–N1	99.9
			N4–H4●●O6	98.9
		3'-C(7):G(16)	02•••H2–N2	99.8
			N3•••H1-N1	99.9
			N4–H4●●O6	98.9
	anti 5'–intercalated	5'-C(5):G(18)	O2●●H2–N2	99.9
			N3•••H1–N1	99.9
			N4–H4●●O6	99.1
		3'-C(7):G(16)	N3•••H1-N1	99.9
			N4–H4●●O6	99.1
			O2●●●H2–N2	96.9
		3'-C(7):T(17)	N4–H4●●O4	45.8
	syn 5'-intercalated	5'-C(5):G(18)	O2●●H2–N2	99.9
			N3•••H1–N1	99.9
			N4–H4●●O6	98.9
		3'-C(7):T(17)	O4●●●H4–N4	83.7
			N3•••H3–N3	74.4
	anti 3'-intercalated	5'-C(5):T(17)	N4–H4●●O4	36.5
		3'-C(7):G(16)	02•••H2–N2	99.7
			N3•••H1−N1	99.9
			N4–H4●●O6	98.6
	syn 3'-intercalated	5'-C(5):G(18)	O2●●H2–N2	99.5
			N3•••H1–N1	99.1
			N4–H4●●O6	97.1
		3'-C(7):G(16)	O2●●●H2–N2	99.5
			N3•••H1–N1	99.9
			N4–H4●●O6	98.7

GXG	anti base-displaced	5'-G(5):C(18)	N2-H2•••O2	99.9
			N1-H1•••N3	99.9
			O6∙••N4–H4	99.2
		3'-G(7):C(16)	N2-H2•••O2	99.7
			N1-H1•••N3	99.9
			06∙••N4–H4	98.9
	syn base-displaced	5'-G(5):C(18)	N2-H2•••O2	99.9
			N1-H1•••N3	99.9
			06∙••N4–H4	99.3
		3'-G(7):C(16)	N2-H2•••O2	99.8
			N1-H1•••N3	99.9
			06∙••N4–H4	99.1
	anti 5'–intercalated	5'-G(5):C(18)	N2-H2•••O2	99.9
			N1-H1•••N3	99.9
			O6∙∙•N4–H4	99.9
		3'-G(7):C(16)	N2-H2•••O2	91.6
			N1-H1•••N3	92.5
			O6∙••N4–H4	93.5
	svn 5'-intercalated	5'-G(5)·C(18)	N2–H2●●O2	99.8
	syn s' merediatea	5 0(5).0(10)	N1-H1•••N3	99.9
			06•••N4–H4	98.4
		3'-G(7):T(17)	O2●●●N1–H1	47.2
	anti 3'–intercalated	5'-G(5):C(18)	N2-H2•••O2	34.1
			N1-H1•••N3	34.0
			06∙••N4–H4	32.5
		3'-G(7):C(16)	N2-H2•••O2	99.7
			N1–H1•••N3	99.2
			O6∙••N4–H4	97.9
	syn 3'-intercalated	5'-G(5):C(18)	N2-H2•••O2	99.6
			N1-H1•••N3	99.7
			06∙••N4–H4	96.1
		3'-G(7):C(16)	N2–H2•••O2	99.6
			N1–H1•••N3	99.9
			O6∙∙•N4–H4	99.2

CXG	anti base-displaced	5'-C(5):G(18)	O2●●H2–N2	99.9
			N3•••H1–N1	99.9
			N4–H4●●O6	98.8
		3'-G(7):C(16)	N2–H2•••O2	99.8
			N1-H1•••N3	99.9
			O6●●•N4–H4	98.7
	syn base-displaced	5'-C(5):G(18)	02•••H2–N2	99.7
			N3•••H1–N1	99.9
			N4–H4●●O6	98.9
		3'-G(7):C(16)	N2-H2•••O2	99.8
			N1-H1•••N3	99.9
			O6●●●N4–H4	99.1
	anti 5'–intercalated	5'-C(5):G(18)	O2●●H2–N2	99.9
			N3•••H1−N1	99.9
			N4–H4●●O6	98.7
		3'-G(7):C(16)	N2-H2•••O2	98.1
			N1-H1•••N3	98.7
			O6∙••N4–H4	98.6
	cup E'-intercolated	E'_C(E)·C(19)		00.0
	syn 5 – mercalateu	5 -C(5).G(18)		99.9 00 0
				00 0
		$2' C(7) \cdot C(1C)$	N2-H2000	90.9 01 5
		5-0(7).0(10)		94.5
				95.0
			00000114	55.5
	anti 3'–intercalated	5′-C(5):G(18)	O2●●H2–N2	44.6
			N3•••H1–N1	44.5
			N4–H4●●O6	50.2
		3'-G(7):C(16)	N2-H2•••O2	99.9
			N1-H1•••N3	99.9
			O6∙••N4–H4	98.8
				_
	syn 3'-intercalated	5'-C(5):G(18)	O2●●H2–N2	99.5
			N3•••H1−N1	99.4
			N4–H4●●O6	98.8
		3'-G(7):C(16)	N2-H2•••O2	99.7
			N1-H1•••N3	99.9

			O6∙••N4–H4	99.1
GXC	anti base-displaced	5'-G(5):C(18)	N2–H2•••O2	99.8
			N1-H1•••N3	99.9
			O6∙••N4–H4	99.3
		3'-C(7):G(16)	02•••H2–N2	99.9
			N3•••H1–N1	99.9
			N4–H4●●O6	98.3
	syn base-displaced	5'-G(5):C(18)	N2-H2•••O2	99.8
			N1-H1•••N3	99.9
			O6∙••N4–H4	99.4
		3'-C(7):G(16)	O2•••H2−N2	99.8
			N3•••H1–N1	99.9
			N4–H4●●O6	99.1
	anti 5'–intercalated	5'-G(5):C(18)	N2-H2•••O2	99.8
			N1-H1•••N3	99.9
			O6∙••N4–H4	99.0
		3'-C(7):G(16)	O2●●H2–N2	95.3
		3'-C(7):T(17)	N4–H4●●O4	52.1
			N3•••H2−N2	39.7
	syn 5'-intercalated	5'-G(5):C(18)	N2-H2•••O2	99.8
			N1-H1•••N3	99.9
			O6●●●N4–H4	98.6
		3'-C(7):G(16)	O2●●●H2–N2	80.3
		3'-C(7):T(17)	N4–H4●●O4	89.7
			N3•••H3–N3	80.6
	anti 3'–intercalated	5'-G(5):C(18)	N2−H2•••O2	99.2
			N1-H1•••N3	99.3
			O6●●●N4–H4	97.9
		3'-C(7):G(16)	O2●●●H2–N2	99.8
			N3•••H1−N1	99.9
			N4–H4∙••O6	98.4
	syn 3'-intercalated	5′–G(5):C(18)	N2-H2•••O2	99.9
		,	N1–H1•••N3	99.9
			O6●●●N4–H4	99.5
		3'-C(7):G(16)	O2●●●H2–N2	99.9
			N3•••H1–N1	99.9

N4–H4•••O6 98.5 ^{*a*}Hydrogen-bond distance cut-off within 3.4 Å heavy atom separation and 120° X–H–X angle.^bNucleotides in the 11-mer DNA are numbered starting from the 5′–side of each strand, with the strand containing the lesion numbered first. **Table S4:** Average pseudostep parameters,^a minor groove width,^b and standard deviations for each adducted DNA conformer in different sequence contexts.

Sequence								Minor
Context	Conformer	Shift (Å)	Slide (Å)	Rise (Å)	Tilt (°)	Roll (°)	Twist (°)	Groove (Å)
GXG	unmodified	0.1±0.7	-1.6±1.3	6.8±0.4	-1.9±5.0	5.4±7.0	65.0±6.0	7.2±1.5
	<i>anti</i> base-displaced	-1.5±0.7	1.3±1.1	6.7±0.3	0.7±4.8	-4.4±5.5	57.1±6.0	7.7±1.2
	anti 5'–intercalated	-1.9±1.1	1.6±1.8	9.5±0.6	-19.3±6.5	-1.1±9.8	46.2±11.3	16.3±4.5
	anti 3'-intercalated	-1.6±0.9	2.1±1.0	10.1±0.4	-4.2±5.3	-4.4±8.2	46.3±7.1	10.5±1.8
	syn base-displaced	-1.4±0.9	0.7±1.1	6.7±0.3	2.5±4.9	6.1±6.1	51.4±6.3	9.1±1.7
	syn 5'-intercalated	-1.7±1.2	0.9±1.6	9.6±0.8	-9.1±9.3	-3.8±10.4	54.4±11.8	14.6±3.3
	syn 3'-intercalated	-1.5±1.0	0.9±1.2	10.0±0.7	-8.9±5.5	6.6±8.3	50.4±7.7	11.5±1.7
CXG	unmodified	0.0±0.8	-1.6±1.0	6.7±0.4	0.1±5.2	11.3±8.4	62.9±6.3	7.7±1.4
	anti base-displaced	-1.6±0.7	1.0±1.0	6.8±0.3	-1.5±5.0	-3.8±5.9	56.5±5.1	7.4±1.4
	anti 5'–intercalated	-2.1±1.0	0.5±1.5	9.4±0.5	-17.0±6.9	-2.0±9.6	38.7±14.6	10.2±3.1
	anti 3'-intercalated	-0.9±1.5	1.9±1.4	9.1±0.8	-6.2±7.9	-3.2±13.3	48.9±12.1	12.9±2.8
	syn base-displaced	-1.9±0.9	0.6±1.1	6.8±0.4	1.2±5.3	6.4±6.9	48.8±5.9	8.7±1.7
	syn 5'-intercalated	-2.2±1.1	-0.2±1.0	9.8±0.6	-16.6±6.9	-1.3±9.0	50.5±8.0	7.9±1.7
	syn 3'-intercalated	-1.6±1.2	1.4±1.5	10.0±0.7	-9.5±6.0	6.3±9.5	47.2±8.3	11.2±2.0
GXC	unmodified	0.2±0.7	-1.4±1.1	6.6±0.4	-0.9±5.1	3.1±7.0	66.9±6.1	6.9±1.5
	anti base-displaced	-1.4±0.7	0.9±0.9	6.8±0.3	-0.5±4.9	-5.1±5.6	57.8±4.7	7.8±1.3
	anti 5'–intercalated	-1.5±0.9	1.0±1.0	9.0±0.5	-14.5±6.3	-1.5±8.4	51.5±7.0	14.5±3.8
	anti 3'-intercalated	-1.6±1.2	1.3±1.2	10.0±0.5	-9.9±6.4	-2.6±9.4	48.3±9.4	10.1±1.8
	syn base-displaced	-1.6±0.8	-0.2±1.2	6.8±0.3	0.8±4.9	5.9±6.3	54.4±6.0	8.4±1.5
	syn 5'-intercalated	-1.5±1.0	-0.9±1.2	8.7±0.5	-7.7±6.5	7.4±10.6	45.3±10.3	10.1±2.3
	syn 3'-intercalated	-1.7±1.0	2.1±0.9	10.3±0.5	-9.3±5.0	1.7±8.8	48.6±8.0	10.4±1.8
схс	unmodified	0.3±0.8	-1.3±1.0	6.5±0.4	1.9±5.2	8.6±7.8	63.1±6.0	7.2±1.5
	<i>anti</i> base-displaced	-1.6±0.7	0.8±0.8	6.9±0.3	-2.1±5.0	-5.2±5.9	56.8±4.8	7.6±1.2
	anti 5'–intercalated	-2.2±1.1	0.5±1.0	9.0±0.7	-14.9±6.7	-0.7±9.0	45.9±9.3	9.9±2.0
	anti 3'-intercalated	-0.5±1.2	1.4±1.2	9.1±1.0	-7.2±7.0	-1.5±9.1	54.5±9.2	11.5±2.7
	<i>syn</i> base-displaced	-1.9±0.9	0.0±1.2	6.9±0.4	0.7±5.1	7.7±8.1	51.2±6.1	7.7±1.7
	syn 5'-intercalated	-1.0±1.5	-1.0±1.7	8.9±0.7	-10.1±8.4	5.1±10.4	53.0±8.4	11.6±1.7
	syn 3'-intercalated	-1.7±1.1	1.5±1.4	10.1±0.6	-11.1±5.4	7.5±9.5	47.3±8.3	9.5±2.0

^aCalculated using the 3' and 5'–flanking base pairs. ^cCalculated as the distance between the P atom of the 7th and the 20th residue minus 5.8 Å to account for the van der Waals radii of the two phosphate groups.

Table S5: Interaction energies between the adduct and the opposing thymine for the base-displaced intercalated conformations of ALI-N⁶-dA adducted DNA in different sequence contexts derived from 20 ns MD simulations (kJ mol⁻¹).

Sequence Context	Conformation	E _{vdw} + E _{elec}
GXG	anti base-displaced	-18.9±3.8
	syn base-displaced	-10.5±4.4
CXG	anti base-displaced	-18.1±4.2
	syn base-displaced	-8.4±4.6
GXC	anti base-displaced	-17.6±4.2
	syn base-displaced	-10.1±3.3
СХС	anti base-displaced	-15.5±5.0
	syn base-displaced	-8.0±4.6