Alkyl chain modulated cytotoxicity and antioxidant activity of bioinspired amphiphilic selenolanes

Prachi Verma,^{a,b} Amit Kunwar, ^{*a} Kenta Arai,^c Michio Iwaoka^c and K. Indira Priyadarsini ^{a,b}

^aRadiation and Photochemistry Division, Bhabha Atomic Research Centre, ^bHomi Bhabha National Institute, Mumbai - 400085, India

^cDepartment of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan

*Corresponding author

Radiation and Photochemistry Division,

Bhabha Atomic Research Centre,

Mumbai - 400085, India.

E-mail- kamit@barc.gov.in

Tel: 91-22-25592352, Fax: 91-22-25505151.

Experimental Methods S1

NMR Spectrum data

¹H (500 MHz), ¹³C (125.8 MHz), and ⁷⁷Se(95.4 MHz) NMR spectra were recorded with a Bruker AV-500 spectrometer at 298 K. Coupling constants (*J*) are reported in Hz.

(S)-N-hexyltetrahydroselenophen-3-amine (MAS N-alkyl conjugate C6)

¹H NMR (CDCl₃) δ=0.88 (t, *J*= 6.8 Hz, 3H), 1.29–1.38 (m, 6H), 1.90–1.97 (m, 2H), 2.34–2.42(m, 1 H), 2.80–2.82 (m, 1H), 2.87–2.92 (m, 1H), 2.98–3.07 (m, 3H), 3.18–3.25 (m, 2H), 9.76 ppm (br s, 2H); ¹³C NMR (CDCl₃) δ = 13.9, 18.4,22.5, 22.9, 26.1, 26.6, 31.2, 34.2, 47.3, 63.0 ppm; ⁷⁷Se NMR(CDCl₃) δ =165.3 ppm

NMR Spectra

(S)-N-hexyltetrahydroselenophen-3-amine(MAS N-alkyl conjugate C6)

Supplementary figure legends

Figure S1. The hydrolytic stability of the conjugates was checked by monitoring the ¹H (500 MHz) NMR spectra of the representatives DHS-C₁₄ in deuterated water. For this, approximately 1 mg of above compound was dissolved in 1 ml of 1:9 mixture of DMSO-d6 and D₂O and NMR spectra were recorded with a Bruker AV-500 spectrometer at 298 K at 1 min and 24 h after making the solutions. The spectra clearly show that there is no degradation of the conjugates under these conditions at least for 24 h.

Figure S2. Chain length dependant cytotoxicity of the DHS and MAS conjugates (C_{6-14}) in cells. (A) & (B) Graphs show the effect of hydrophobic chain length on the cytotoxic effect of the conjugates of DHS and MAS as determined by MTT assay at 24 h after addition of 30 μ M of above compounds to CHO and MCF7 cells respectively. Cytotoxicity is expressed as percentage of the control cells (DMSO, 0.25%). Results are presented as mean ± SEM, n = 3.

Figure S3. Cytotoxic effects of DHS, MAS and their conjugates (C_{6-14}) on MCF7 cells. Cytotoxicty was evaluated by the MTT assay at different time points (24, 48 and 72 h) after the addition of the varying concentrations (1-50 µM) of DHS, MAS and their conjugates (C_{6-14}). Cytotoxicity is expressed as percentage of the control cells (DMSO, 0.25%). Results are presented as mean ± SEM, n = 3.

Figure S4. Cytotoxic effect of free fatty acid ($C_{6:0}$ to $C_{12:0}$) in cells. The CHO (A) and MCF7 (B) cells were treated with increasing concentrations of fatty acids for 72 h and the cytotoxicity was determined by MTT assay. Cytotoxicity is expressed as percentage of the control cells (DMSO, 0.25%). Results are presented as mean \pm SEM, n = 3.

Figure S5. The effect of the treatments with DHS and MAS on the activity of lactate dehydrogenase (LDH) was evaluated using LDH detection kit, Roche, Switzerland. For this assay, CHO cells (1×10^6) were homogenised in 150 µl of cold LDH assay buffer provided with the kit. Approximately 50 µl of this lysate was incubated with DHS or MAS for 2 h and then subjected to LDH activity determination according to manufacturer's instructions. The control sample represents untreated cell lysate subjected to LDH determination.

Figure S1

DHS-C₁₄

Se 0 HO 0 C₁₃H₂₇

Figure S2

Concentration, µM

Figure S5

