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Supplementary Methods 

Standardization 

Before generation of chemical and protein target descriptors, all structures were standardized 

using ChemAxon’s Standardizer (version 5.11.5, 2013, www.chemaxon.com).  The optional 

steps selected were retention of only the largest fragment of fragmented compounds, 

neutralizing species, and canonicalizing tautomers. 

Descriptor selection 

In order to reduce the total number of descriptors, and to ensure similar numbers of 

descriptors from each data type, individual maximum correlation cutoffs were derived for 

each data domain. 

The cytotoxicity descriptors, being the fewest, were allocated a maximum correlation cutoff 

of 0.90, i.e. for every pair of descriptors with a pairwise correlation of over 0.90, the 

descriptor with the highest average correlation to the rest of the descriptors is removed.  This 

routine applied to the whole descriptor set was found to leave 55 cytotoxicity descriptors. 

For the chemical and protein target descriptor sets, starting with 0.90, a cutoff was applied to 

the descriptors and the number of remaining descriptors was counted.  If the number was less 

than 66, which is within 20% of the number of cytotoxicity descriptors retained with a cutoff 

of 0.90, this cutoff was chosen. Otherwise, the cutoff was lowered by 0.05 and the number of 

resulting descriptors counted again.  In this way, correlation cutoffs of 0.75 for chemical and 

0.60 for protein target descriptors were chosen. The relative sizes of these cutoffs reflect both 

the original numbers of descriptors present from each domain (i.e. 182 cytotoxicity 
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descriptors, 192 chemical descriptors, and 477 protein target descriptors) as well as the 

degree of correlation within a data type. 

These optimum cutoffs were derived in advance from the entire dataset.  This avoided the 

computational burden of deriving individual correlation cutoffs for each of the 100 training 

sets employed, as only approximately equal numbers of descriptors are required.  However, 

the cutoffs were only applied once the validation set had been set aside, and so the selection 

of which descriptors to discard was determined by the correlations between the descriptors in 

the modelling set. 

Downsampling 

Because of the imbalance in class sizes (275 nontoxic compounds, in comparison with 92 

toxic) among the dataset employed, it was necessary to use a downsampling procedure to 

better balance the classes within each modelling set. 

In the descriptor space defined by the chemical descriptors, the Euclidean distances between 

each pair of toxic and nontoxic chemicals was calculated.  Only those nontoxic molecules 

closer than d − 0.5 σ to a toxic compound in chemical descriptor space (where d is the 

average and σ  the standard deviation of interclass distances) were retained to train the model. 

In this way, those nontoxic molecules easily identifiable through a naïve chemical similarity 

screen were excluded from model building. 
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Supplementary Analysis 

Dataset chemistry 

The dataset was analysed for common Marcko frameworks.  These are given in Table S1. 

It can be seen that the most common framework by far represents simple aromatic molecules, 

accounting for over 100 structures.  Only eight other frameworks were seen more than once, 

of which all but two were also aromatic. 

Model performance between data domains 

Figure S1 illustrates the varying performances of differently constructed models, projected 

onto the 2D space described by the first two principal components in tripartite space for ease 

of comparison, and how they compare to the performance of the superior tripartite model. 

A number of molecules are poorly predicted by two of the single domain models but well 

predicted by the tripartite model.  In 4, the toxic chemical clearly distinguishable at the top 

right corner of the plots, it is only correctly identified as toxic when cytotoxicity descriptors 

are included.  We may therefore conclude that this compound’s toxicity is encoded only in 

these descriptors. 

It is therefore observed that the tripartite model is not simply an averaging of the three single-

data models, but rather an integration and improvement – taking into account the most 

relevant information from each domain.. 

Descriptor importance 

It can be seen in Figure S2 that the distribution of protein targets is less skewed than the other 

two domains.  This implies that many different proteins may be involved in toxicity 
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pathways, and that therefore a large panel of protein targets may be required for best results 

(though it may also be indicative of mutual correlations in this data domain). 

Receiver operating characteristic (ROC) curves 

ROC curves are a means of visualising the trade-offs inherent in the choice of cutoff used to 

transform the real-valued output of a scoring classifier into a binary class prediction. A ROC 

curve plots a cutoff-parameterised curve in the plane described by the true positive rate (i.e. 

the sensitivity) and the false positive rate. In this way, the predictive performance of a 

classifier may be visualised independent of the cutoff chosen to be used. 1 The area 

underneath the ROC curve (AUC) is therefore a general measurement of predictive power, 

complementary to CCR, sensitivity and selectivity. 

The modelling procedure outlined in the main paper was repeated in full, and the AUC was 

this time measured as the main performance metric. The results are given in Tables S2 and 

S3, and illustrated by Figures S3 and S4. 

The pattern of improving performance with further integration of descriptor domains is again 

evident using this metric (e.g. an average increase in AUC between models trained and tested 

on the same compounds of 0.053 ± 0.005 on adding cytotoxicity descriptors to chemical and 

protein target descriptors, and an average increase of 0.125 ± 0.007 on adding protein target 

descriptors to cytotoxicity descriptors), with the exception that using this metric no 

statistically meaningful change is observed when adding protein target descriptors to models 

which already use chemical descriptors. 

Figure S5 displays ROC curves for a selection of models, generated in the ROCR package for 

R.  It can be seen that the models built using protein target descriptors alone show more 

variation in performance when compared to the other ROC curves shown.  The most 
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consistent performances are seen from the model using integrated descriptor domains. 

Another striking feature is the skew towards the left-hand axis of the models build using 

cytotoxicity alone: this represents conservative predictive behaviour, making few (mainly 

accurate) positive predictions. This dovetails with the high-selectivity, low-sensitivity 

behaviour exhibited by such models in the main paper, and suggests that cytotoxicity 

descriptors may possibly only be identifying certain toxicities rather than having a broad 

applicability. 
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Supplementary Tables 

Table S1 

Rank Occurrences Framework SMILES Framework structure 

1 101 c1ccccc1 
 

2 6 c1ccc(Cc2ccccc2)cc1 
 

= 3 5 c1ccc2c(c1)OCO2 
 

= 3 5 c1ccncc1 
 

= 3 5 C1CO1  

= 6 3 c1ccc(-c2ccccc2)cc1 

 

= 6 3 C1CCCCC1 
 

= 6 3 c1ccc2ccccc2c1 
 

= 6 3 c1ccc(C2CO2)cc1 

 

 

The most common Marcko frameworks in the dataset.  Of the 367 structures, 232 could be 

reduced to Marcko frameworks.  Any frameworks occurring more than twice in the dataset 

are displayed; these frameworks correspond to 134 structures (58% of the frameworks, or 

37% of the structures). 
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Table S2 

Descriptor domains AUC (mean ± SD) 

Chemical only 0.84 ± 0.05 

Protein target only 0.73 ± 0.07 

Cytotoxicity only 0.67 ± 0.07 

Chemical and protein target 0.83 ± 0.05 

Chemical and cytotoxicity 0.85 ± 0.05 

Protein target and cytotoxicity 0.83 ± 0.05 

Chemical, protein target and cytotoxicity 0.85 ± 0.05 

 

Means and standard deviations of the area under the ROC curve for models built using each 

combination of data. With this metrics, the improvement on integration of further data 

domains is less pronounced – especially when compared to the performance of the models 

built using chemical descriptors alone. Once again the standard deviations indicate strong 

variability of performance across different selections of training and test data. 

Abbreviations: AUC, area under the ROC curve.  
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Table S3 

Descriptor set Comparison descriptor set AUC change 
(mean ± SE)  

p-value 

Chemical and protein target Chemical only −0.004 ± 0.002 7.3 × 10−3 

Chemical and protein target Protein target only 0.104 ± 0.007 < 2.2 × 10−16 

Chemical and cytotoxicity Chemical only 0.010 ± 0.002 4.7 × 10−6 

Chemical and cytotoxicity Cytotoxicity only 0.177 ± 0.007 < 2.2 × 10−16 

Protein target and cytotoxicity Protein target only 0.067 ± 0.005 < 2.2 × 10−16 

Protein target and cytotoxicity Cytotoxicity only 0.125 ± 0.007 < 2.2 × 10−16 

Chemical, protein target and cytotoxicity Chemical and protein target 0.015 ± 0.002 1.7 × 10−10 

Chemical, protein target and cytotoxicity Chemical and cytotoxicity 0.0006 ± 0.002 0.76 

Chemical, protein target and cytotoxicity Protein target and cytotoxicity 0.053 ± 0.005 4.8 × 10−16 

 

Differences in predictive performance on integrating further data domains.  As in Table 3 of 

the main paper, here area under the ROC curve improvements refer to the increase in 

performance of models using the given descriptor set, compared with the models trained and 

tested on the same data but using the comparison descriptor set.  The p-value is calculated 

using a two-tailed t-test with the null hypothesis that there is no difference in performance 

between models using the different descriptor sets. Using this metric, there is no significant 

difference made to performance on including protein target descriptors compared to using 

chemical descriptors only, or using chemical and cytotoxicity descriptors; however, 

integrating protein target descriptors with cytotoxicity descriptors yields an improvement of 

0.125 ± 0.007 on cytotoxicity descriptors alone. 

Abbreviations: AUC, area under the ROC curve. 
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Supplementary Figures 

Figure S1 

 

Performances of single domain and tripartite models mapped onto a section of the principal 

components analysis plot of the tripartite descriptor space.  The two principal components 

plotted represent 22% of the total variance in tripartite space, and 16 outlier compounds are 

not visible within these axis limits. 
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Figure S2 

 

Plots of descriptor importance distributions for the three data domains.  
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Figure S3 

 

Performance distributions of predictive model build using each combination of descriptor 

domains, measured by area under the ROC curve. Here error bars are used to display the 

standard deviations in the performance distributions, illustrating the marked dispersal from 

the mean. Models including chemical descriptors tend to perform most strongly, and there is 

a pattern of increased performance on addition of chemical or cytotoxicity descriptors.  

Abbreviations: AUC, area under the ROC curve; Chem, chemical descriptors; Targ, protein 

target descriptors; Cytotox, cytotoxicity descriptors.  
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Figure S4 

 

Mean change in the area under the ROC curve on addition of further heterogeneous 

descriptors to models trained and tested on the same data.  Here error bars represent the 

standard error in the value of the mean.  Chemical data still give the biggest improvement 

(where originally absent), but it is evident that protein target descriptors do not improve the 

ROC statistic when added to descriptor sets already containing chemical descriptors. 

Abbreviations: as for Figure S3.  
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Figure S5 

 

ROC curves for a selection of models. Each individual line on a plot corresponds to one of 

the 20 full cross-validation repeats, in which each each compound is predicted exactly once.  

All curves are roughly symmetrical, except for those representing models built using 

cytotoxicity descriptors only, which skews towards the left-hand axis. The curves 

representing models built using protein target descriptors only show the most variation in 

performance, while the curves representing models built using the full tripartite descriptor set 

exhibit least variation. 
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