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1 SUPPLEMENTAL

2 Table S1. EDX data for nanoplatinum deposited using various treatments.

Treatment Element Weight % Atomic %

CK 5.7 41.0+12.9

Sonochemical OK 3.4 18.7 £12.5
electrodeposition Pt M 88.1 39.2+22
(SED) PtL 0.4 1.2+0.6

Pb M 0.2 0.1+£513.7

o CK 13.3 61.4+£10.6

Combination of OK 44 15.3 £ 11.8

sonochemical and

pulsed deposition in PtM 81.6 23.1+£2.5
phase (SPED) PtL 0.1 21215
Pb M 0.6 0.2+241

CK 15.9 64.4 £ 10.0

Pulsed OK 1.3 11.1+11.6
electrodeposition Pt M 74.0 18.2+ 27
(PED) Pt L 2.1 0.9+0.6

Pb M 0.8 0.8+10.4

o CK 18.3 67.0 £ 10.5

Combination of oK 13 13.8+11.9
phase (pulSED) PtL 3.2 22+15

Pb M 1.9 1.6+11.9
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Figure S1. Visualization of cavitation and microjetting, increase mass transport and
reduce the diffusion layer. This serves to improve the electrodeposition process of

nanomaterials onto the working electrode.
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Figure S2. Schematic of the sonoelectrodeposition system. The working electrode was
a Pt/Ir electrode with a Pt counter electrode. The cup holding the plating solution is

placed in the bath sonicator. Power to the sonicator and power supply are controlled by
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an Arduino microcontroller.
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Figure S3. Schematic representation of four plating treatments used in this work: (A)

sonochemical electrodeposition with no pulsing (SED); both plating potential and

sonicator are active for a fixed duration. (B) Pulsed SED (pulSED); plating potential

24 duration (Ton) and sonication duration (Tyg) are alternated a number of cycles (Ncycies).
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(C) No sonication; plating potential is pulsed (PED). (D) Constant sonication and pulsed

plating potential (SPED).
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Figure S4. Scanning electron micrographs for various treatments (a) SED, (b) SPED,

(c) PED, (d) pulSED.
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Figure S5. Elemental analysis using electron dispersive X-ray spectroscopy
for a) SED, b) SPED, c) PED, and d) pulSED. PtM (edge energy = 3.3 keV) and
PiLa (edge energy = 9.4 keV) peaks are shown on each panel. Only a small fraction of
L band electrons were destabilized relative to M band electrons, indicating the metal

surface structure was stable up to the X ray emission depth (approximately 1-2 ym)
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Figure S6. Change in platinum for SED, SPED, PED, and pulSED treatment based on

EDX analysis.
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Figure S7. Trend between ES and sensitivity for various nanoplatinum probes shown in
Table 1. The pulSED technique (650 mHz) was higher than all other methods used in
this manuscript, and significantly higher than previous publications using nanplatinum
only. The graphene-nanoplatinum “sandwich” by Vanegas et al (2014) was similar in
terms of sensitivity towards H,0O,, but had a lower electroactive surface area than the

pulSED nanoplatinum.
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Figure S8. Representative cyclic voltammograms for various pulSED duty cycles. The

peak oxidative and reductive current increase with increasing duty cycle, which

corresponds with the results in Fig 4.
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Figure S9. Relationship between the RMS and ESA versus pulSED duty cycle. A non-
linear curve (empirical) was fit to the data showing an exponential increase of RMS as
the duty cycle increased.
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Figure S$10. Cyclic voltammograms for pulSED nanoplatinum-modified electrodes in the

absence and presence of 5mM 8 glucose (PBS buffer at pH 7.1) at a scan rate of 50

mV sec!
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Figure S11. Effect of concentration on response time for pulSED sensors a)

Representative step change in oxidative current showing the data and the empirical
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model. Panels b and c: average response time as a function of total concentration for b)

hydrogen peroxide and ¢) glucose sensors
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Figure S12. Effect of Nafion on reducing interference by electroactive species such as
ascorbic acid (AA) at +500 mV operating potential. The DCPA plot clearly shows that
the Nafion-modified electrode was sensitive to 1mM H,0O, addition, but not AA. The red
arrows represent total AA concentrations of 2.5 mM and 5.0 mM. Addition of AA did not

cause a change in oxidative current (less than 1% change for concentrations between

13



95 Calculating metal thickness with Faraday’s Law
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According to Faraday’s Law, the mass of plated metal in is:

where:
M = Mass of plated metal [g]
| = Plating current [Coul sec™]
t = Plating time [sec]
MW = Atomic weight of metal [g mol-']
z = Valence of the dissolved metal [eq mol-']

F = Faraday's constant [96,485 Coul eq™]

The thickness of the plated metal can be calculated by:

M
prA,

where:
T = Thickness of plated metal [um]
p = density of metal [g cm?]

A = Physical surface area of the electrode [cm?]

(Equation S1)

(Equation S2)
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