Supporting information

Development of a new *in-situ* analysis technique applying luminescence of local coordination sensors: principle and application for monitoring metal-ligand exchange processes

Huayna Terraschke,* Laura Ruiz Arana, Patric Lindenberg and Wolfgang Bensch Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel Max-Eyth-Straße 2, 24118 Kiel, Germany. E-mail: hterraschke@ac.uni-kiel.de

Contents

Figure S1. *In-situ* luminescence measurements for assembly 1 (λ_{ex} = 365 nm), presenting the characteristic ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 1-4) Eu³⁺ transitions ^[1] besides the intensity profile of the excitation light.

Figure S2. *Ex-situ* scanning electron microscopy images of $[Eu(phen)_2(NO_3)_3]$ after a) 5 min, b) 20 min, c) 60 min and d) 90 min after the addition of the phen to the $Eu(NO_3)_3$ solution.....3

Figure S3. Time dependence of addition of phen to $Eu(NO_3)_3$ solution (red curve) in comparison to pH (dark blue curve), conductivity (green curve), intensity of ${}^5D_0 \rightarrow {}^7F_2 Eu^{3+}$ transition ^[1] (orange curve) and intensity of excitation source (λ_{ex} = 395 nm, light blue curve).

Figure S6. *In-situ* XRD patterns for different reaction times of the assembly **2** in comparison to calculated patterns for $[Eu(phen)_2(NO_3)_3]^{[2]}$ and $[Sn(phen)CI_4]^{[3]}$. Broadening effect of the single reflexes caused by the large measurement volume displayed on Figure S9......7

1. Additional in-situ and ex-situ results for assembly 1

Figure S1. *In-situ* luminescence measurements for assembly 1 (λ_{ex} = 365 nm), presenting the characteristic ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 1-4) Eu³⁺ transitions ^[1] besides the intensity profile of the excitation light.

Figure S2. *Ex-situ* scanning electron microscopy images of $[Eu(phen)_2(NO_3)_3]$ after a) 5 min, b) 20 min, c) 60 min and d) 90 min after the addition of the phen to the $Eu(NO_3)_3$ solution.

Figure S3. Time dependence of addition of phen to $Eu(NO_3)_3$ solution (red curve) in comparison to pH (dark blue curve), conductivity (green curve), intensity of ${}^5D_0 \rightarrow {}^7F_2 Eu^{3+}$ transition ^[1] (orange curve) and intensity of excitation source (λ_{ex} = 395 nm, light blue curve).

Figure S4. *Ex-situ* X-ray diffraction pattern for different reaction times in comparison to the calculated pattern for $[Eu(phen)_2(NO_3)_3]$ ^[2]. These samples have been removed and dried at 80°C for 2 h without washing.

2. Additional in-situ and ex-situ results for assembly 2

Figure S5. Yellow color of $[Sn(phen)Cl_4]$ converted from $[Eu(phen)_2(NO_3)_3]$ upon addition of $SnCl_2$.

Figure S6. *In-situ* XRD patterns for different reaction times of the assembly **2** in comparison to calculated patterns for $[Eu(phen)_2(NO_3)_3]^{[2]}$ and $[Sn(phen)Cl_4]^{[3]}$. Broadening effect of the single reflexes caused by the large measurement volume displayed on Figure S9.

Figure S7. Modification of glass reactor with introduction of a glass tube for allowing *in-situ* analyses applying synchrotron radiation. Red arrow shows the portion of the reaction system available for the XRD measurements.

3. References

- [1] G. H. Dieke, in Spectra and energy levels of RE ions in crystals, Wiley, New York, **1968**.
- [2] A. G. Mirochnik, B. V. Bukvetskii, P. A. Zhikhareva, V. E. Karasev, *Russ. J. Coord. Chem.* 2001, 27, 443-448.
- [3] D. L. Perry, R. A. Geanangel, *J. inorg, nucl. Chem.* **1974**, 36, 205-206.