Supporting Information

Current Control by Electrode Coatings Formed by Polymerization of Dopamine at Prussian blue-modified Electrodes

Bowen Gao, Lei Su,* Hankun Yang, Tong Shu, and Xueji Zhang*

Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

* Corresponding author. E-mail: sulei@ustb.edu.cn; zhangxueji@ustb.edu.cn.

Fig. S1 a) Current-time responses of the PDA-coated PB electrode to the successive addition of H_2O_2 in 0.1 M phosphate buffer solution (pH 7.4). Applied potential: +0.7 V vs Ag/AgCl. b) A close look of the response current to H_2O_2 from 1 μ M to 40 μ M. c) Calibration curve of the amperometric responses to the H_2O_2 concentration from 1 μ M to 1050 μ M.

Fig. S2 Current-time responses of the FIA system equipped with the PDA-coated PB electrode to injection of 1 mM H_2O_2 ; 0.1 M phosphate buffer solution (pH 7.4); flow rate 100 μ L min⁻¹, operating potential: +0.7 V vs Ag/AgCl.

Fig. S3 Current-time responses of the PDA-coated PB electrode to successive addition of 25 μ M Cys, UA, AA and DA. Applied potential: 0.7 V vs Ag/AgCl. The solution was stirred with a magnetic stirrer. The arrows indicated the addition of the solutions of each kind of the potential interferents.

Fig. S4 Cyclic voltammetric responses of the PB electrode (a) and the PDA-coated PB electrode (b) to $1 \text{ mM H}_2\text{O}_2$ and the potential interferents (AA, UA, DA, Cys, 1 mM) at a scan rate of 50 mV s⁻¹.