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1. Comparison of different geometries of microfluidic channels. As equal voltage is applied to 

each paper triangle pattern, available area shape and magnitude varies, which alters the charge 

density (given here as volt per area). When the available voltage per area was analyzed (Fig. S1), 

we predict that charge density should be greater for paper with printed wax patterns. Detail 

geometrical differences of all patterns is provided in Fig. S2. 

 

 

Figure S1. Charge density (V/mm2) is shown to increases as the area available to solvent 

decreases. 
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Figure S2. Detail geometrical differences between all wax-printed patterns is provided. All 

parameters are given in millimeters (mm). Overall geometry of all paper triangles are 

approximately measured 9 mm base and 16 mm height. 
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2. Comparison of s2, s3, and un-waxed paper. Selection of optimal wax-printed pattern was 

achieved by via comparison of absolute MS/MS product ion intensities of methamphetamine (m/z 

150 → 119), amphetamine (m/z 136 → 119), and cocaine (m/z 304 → 182) using at 0-5 kV spray 

voltages (Fig. S3). Pattern s3 was selected for further experiments because it produced higher 

signal intensity than both s2 and un-waxed paper. 

 

Figure S3. Comparison of s2, s3, and t0 (waxless) paper triangles as a function of voltage using (A) 

amphetamine, (B) cocaine, and (C) methamphetamine diluted in water at 250 ng/mL. Error bars 

show standard deviation for three replicates. At all voltages, s3 wax-printed paper substrate 

produced higher signal intensity than un-waxed paper. I = absolute product ion intensities. 
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3. Analysis of ion current. The occurrence of corona discharge in wax-printed paper spray was 

investigated by analyzing the redox active compound 6-methoxy-1,2,3,4-tetrahydroquinoline 

(MW 163). In particular, we suspected the rise in current (see total ion chromatogram (TIC) below) 

as result of solvent depletion might produce radical cations M•+ (m/z 163).  This expectation was 

not met; instead all in the TIC showed only protonated species at m/z 164 (Figure S4). As a 

consequence, we concluded that the occurrence of corona discharge in the wax-printed channels 

is minimal.  

 

 

Figure S4. Total ion chromatogram recorded after spraying of 1 ppm 6-methoxy-1,2,3,4-

tetrahydroquinoline with 10 L 4:1 MeOH/H2O spray solvent at 3 kV. Inserts shown mass spectra 

taken from (i) the beginning of spray lifetime, (ii) stable spray region, and (iii) increased spray 

current region near the end of spray lifetime. No significant difference is seen in the mass spectra. 
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4. Linear calibration of drugs in urine. Concentrations of 3-500 ng/mL were quantified in fresh 

and dry urine to give LODs shown in Table 1 (main manuscript). All samples were analyzed at 3 

kV spray voltage. 

 

 

Figure S5. Samples of 4 µL fresh urine spiked with 3 – 500 ng/mL drug, sprayed with 10 µL of 

100% acetonitrile on s3 wax paper. Drugs were quantified with absolute intensity of fragmentation 

(A) divided by their respective internal standards (IS) of (A) cocaine (m/z 304 → 182) and IS d3 

(m/z 307 → 185), (B) amphetamine (m/z 136 → 119) and IS d5 (m/z 141 → 123), (C) 

benzoylecgonine (m/z 290 → 168), and IS d3 (m/z 293 → 171) (D) methamphetamine (m/z 150 

→119) and IS d5 (m/z 155 → 123). 
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Figure S6. Samples of 4 µL dried urine spiked with 3 – 500 ng/mL drug, sprayed with 10 µL of 

100% acetonitrile on s3 wax paper. Drugs were quantified with absolute intensity of fragmentation 

(A) divided by their respective internal standards (IS) of (A) cocaine (m/z 304 → 182) and IS d3 

(m/z 307 → 185), (B) amphetamine (m/z 136 → 119) and IS d5 (m/z 141 → 123), (C) 

benzoylecgonine (m/z 290 → 168), and IS d3 (m/z 293 → 171) (D) methamphetamine (m/z 150 

→119) and IS d5 (m/z 155 → 123). 
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Figure S7. Samples of 4 µL dried urine spiked with 3 – 500 ng/mL drug, sprayed with 20 µL of 

100% acetonitrile on un-waxed paper. Drugs were quantified with absolute intensity of 

fragmentation (A) divided by their respective internal standards (IS) of (A) cocaine (m/z 304 → 

182) and IS d3 (m/z 307 → 185), (B) methamphetamine (m/z 150 →119) and IS d5 (m/z 155 → 

123), and (C) benzoylecgonine (m/z 290 → 168), and IS d3 (m/z 293 → 171). 
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5. TIC of cocaine on un-waxed paper. Dried urine sample present on un-waxed paper was 

analysed with 10 L and 20 L pure acetonitrile. Because the spray solvent was allowed to spread 

over the entire paper surface, the increased surface area in contact with air accelerated evaporation, 

which decreased signal lifetime. 

 

 

Figure S8.  500 ng/mL cocaine sprayed with 20 L and 10 L 100% acetonitrile with 3 kV spray 

voltage on un-waxed paper. When 10 L spray solvent was used, signal lasted approximately 15 

seconds, which was determined to be inadequate for more than one MS/MS observation. When 

the spray solvent volume was doubled, the signal lifetime was increased to nearly 1 minute, which 

was more suitable for calibration, as shown in Fig. S7 above. 
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6. Duomeen detection in drum water. Water samples taken from pre- and post- treatment from 

a HP boiler system were analysed for the presence of Duomeen (m/z 325, Figure S9). Samples 

were analysed with 1 kV spray voltage and 10 L MeOH/H2O (4:1, v/v). 

 

 

Figure S9. Analysis of water samples for detection of duomeen. Samples were taken from (A) 

pre-treatment, and (B) post-treatment stages in the boiler system cycle. Duomeen (m/z 325) was 

only detected in post-treatment sample, as expected.  
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7. Metaldehyde fragmentation in water samples. Analysis of water samples containing 

metaldehyde. 4 L of 150 ng/mL metaldehyde sample was deposited onto wax paper and was then 

analysed with 10 L 4:1 MeOH/H2O spray solvent. Sodiated metaldehyde ions (m/z 199) were 

predominantly produced at 1 kV spray voltage whereas protonated ions (m/z 177) were observed 

at 3 kV. The fragmentation patterns for both ions are shown in Fig S10  

 

 

Figure S10. Analysis of water samples containing metaldehyde, sprayed at (A) analysis of 300 

ng/mL sprayed at 1 kV, fragmentation m/z 199 [M+Na]+,  and (B) analysis of 150 ng/mL sprayed 

at 3 kV, fragmentation m/z 177 [M+H]+. Intensities of fragment ions at m/z 111 and 149 were used 

to construct calibration curves found in Fig. 5 C and D, respectively. 
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8. Metaldehyde decomposition in acidified samples. Metaldehyde solutions prepared at pH 7 

and 3 were analysed using paper spray. At solution pH 7, metaldehyde was ionized through sodium 

adduction yielding [M+Na]+ ions (Fig. 11A). On the contrary, a peak at m/z 149 was detected from 

the acidified solution analysed after 5 min of preparation solution (Fig. 11B). This ion (m/z 149) 

is realized as due to the elimination of ethylene from protonated metaldehyde. The expectation is 

confirmed in gas-phase MS/MS experiment where the same fragmentation pathway was observed.   

 

Figure 11. Comparison of PS-MS mass spectra for metaldehyde recorded at different pHs of (A) 

7, and (B) 3. Spectrum in B was recorded after 5 min of adding acid. Inserts show product ion 

mass spectra for [M+Na]+ at m/z 199 and for [M+H]+ at m/z 177 achieved using collision-

induced dissociation.  
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