# Novel structurally tuned DAMN receptor for *"in-situ"* diagnosis of bicarbonate in environmental waters

Masood Ayoub Kaloo, Ramya Sunderraman and Jeyaraman Sankar\*

Department of Chemistry and Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India-462 066

Sankar@iiserb.ac.in

# **Supplementary Information**

| General information                                          | S1  |
|--------------------------------------------------------------|-----|
| Synthesis and characterization of receptor (3)               |     |
| Selectivity of receptor and Naked-eye changes                |     |
| Reversal of receptor carbonate interaction                   |     |
| Jobs Plot                                                    |     |
| Interaction of various receptor derivatives with bicarbonate |     |
| Binding constant calculations                                |     |
| Sensitivity of various receptors                             |     |
| Interaction of Hydroxide anion with receptor                 |     |
| Limit of Detection                                           | S10 |
| Response time of receptor                                    | S11 |

#### **General information**

All solvents were purchased from commercial sources and used without further purification. Starting materials, 4-nitrocinamaldehyde, 98%, (predominantly *trans*) and 1, 2-diaminomalenonitrile were purchased from Sigma-Aldrich. Mass spectra were recorded on a Bruker HR-MS spectrometer using CH<sub>3</sub>CN as solvent. <sup>13</sup>CMR and <sup>1</sup>H nmr spectra were recorded using a Bruker instrument operating at 500MHz. Single-Crystal XRD data was collected on a Bruker APEX II diffractometer (Mo KR,  $\lambda = 0.71069$  <sup>Å</sup>). Absorption measurements were carried out using an Agilent spectrophotometer (Product no: G9821A, Serial no: MY1321007, Cary Win Uv software. For absorption titration experiments, 3ml volumes of receptor in DMSO were used in a quartz cuvette (Hellma) at 25 ± 3 °C, followed by addition of stock solutions of the appropriate anions in the form of Sodium or potassium salts dissolved in Milli-Q water (resistivity=18.2 MΩcm at 25 °C). Graph plotting and liner-curve fitting was done in Origin Pro 8 and Excel 2007. The synthesis of receptor molecule was carried under ambient conditions (298 K).

Single-crystals were obtained through solvent evaporation method. Receptor was dissolved in minimal amount of DMSO and sample vial was left under ambient conditions via perforated cap. After 3-4 weeks, needle shaped crystals obtained were suitable for X-ray diffraction, were collected by filtration. Single-crystal analysis revealed that receptor molecule crystallizes in the P21/c space group.

#### Synthesis and chatacterization of receptor

#### Receptor was synthesised by the below mentioned procedure:

It involves dropwise addition of equimolar methanolic solution of diaminomalenonitrile (50 mg, 0.46 mM) to a stirring solution of 4-nitrocinamaldehyde (81.94 mg) in H<sub>2</sub>O, containing 1-2 drops of concentrated HCl. A yellow-colored solid got precipitated immediately. Later is filtered, washed several times with absolute EtOH and ultimately dried under vacuum and characterised by standard spectroscopic techniques, like NMR and HR-MS and Single-crystal XRD.



Fig. 1 Synthetic Scheme of receptor.

Characterisation of receptor (NMR and HR-MS):

(Yellow colour, 95% yield); (Ratio of *trans* and *cis* isomers: 6:1); <sup>1</sup>H NMR- (500MHz;  $d_6$ -DMSO):  $\delta$ 8.26, 8.22 (two diastereomers, d, J = 9, 9 Hz, 2H),  $\delta$  8.12, 8.06 (two diastereomers, d, J = 9, 4 Hz, 1H), 7.98 (s, 2H),  $\delta$  7.85, 7.93 (two diastereomers, d, J = 3.5, 9 Hz, 2H),  $\delta$  7.93, 7.57 (two diastereomers, d, J = 16, 16 Hz, 1H),  $\delta$  7.29, 7.20 (two diastereomers, dd, J = 8.8, 16 Hz, dd, J = 8.8, 16 Hz, 1H): <sup>13</sup>C NMR- (500 MHz;  $d_6$ -DMSO):  $\delta$  156.40, 147.79, 142.44, 141.27, 131.59, 128.93, 127.68, 124.64, 114.73, 114.07, 103.73. MS (HR-MS, negative mode) found 267.064 for C<sub>13</sub>H<sub>9</sub>N<sub>5</sub>O<sub>2</sub>

Calcd. 267.067.



**Fig. 2** <sup>1</sup>H nmr spectra of receptor.



Fig. 3 <sup>13</sup>C nmr spectra of receptor.



Fig. 4 HR-MS of receptor.

## Selectivity of receptor and Naked-eye changes



Fig. 5 Diagram representing exclusive recognition response of receptor 3 (16  $\mu$ M) with various anions. Observations were made in presence of 10 equivalents of HCO<sub>3</sub><sup>-</sup>, while rest have been added with more than 200 equivalents.

#### **Reversal of receptor carbonate interaction**



Fig. 6 Recyclable nature of receptor (3), driven by  $H^+$  sources. Observations were made with 25uM of 3 with 60uL of 10 mM HCO<sub>3</sub><sup>-</sup>. The reversibility was obtained upon addition of 20 µl of 1 mM H<sub>2</sub>SO<sub>4</sub>. Jobs Plot



Fig. 7 Jobs plot for determination of stoichiometry of receptor-bicarbonate interaction (R = receptor 3).

#### Interaction of various receptor derivatives with bicarbonate



Fig.8 Absorption changes of -OCH<sub>3</sub> (1) receptor with bicarbonate anion.



Fig. 9 Absorption changes of -H (2) receptor with bicarbonate anion.

#### **Binding constant calculations**

For the 1:1 interaction, binding constants were obtained with the help of Benesi-Hilderbrand Plots below. Here variation of reciprocal of change in emerging absorption signal after bicarbonate interaction ( $1/\Delta A$ ) was fitted with respect to reciprocal of HCO<sub>3</sub><sup>-</sup> concentration in  $\mu$ M (1/C). Binding constant (K) can be calculated by the below relation:

 $K = (Intercept/Slope)*1000000 M^{-1}$ 



Fig. 10 Inverse of absorption changes of  $-OCH_3$  (1,  $28\mu M$ ) receptor with inverse of  $HCO_3$ -concentrations.



Fig. 11 Inverse of absorption changes of  $-H(2, 20 \mu M)$  receptor with inverse of  $HCO_3$  concentrations.



Fig. 12 Inverse of absorption changes of  $-NO_2$  receptor (3, 30  $\mu$ M) with inverse of  $HCO_3^-$  concentrations.

#### Sensitivity of various receptos

Sensitivity of receptor is presented by the slope of below curve ( $\theta$ ), presenting variation of absorbance of emerging signal with bicarbonate anion concentrations.



Fig.13 Variation of absorbance at 470nm of -OCH<sub>3</sub> receptor (1, 28 µM) with bicarbonate.



Fig14 Variation of absorbance at 450 nm of -H receptor (2, 20  $\mu$ M) with bicarbonate anion concentrations.



Fig. 15 Variation of absorbance at 555nm of  $-NO_2$  receptor (3, 30  $\mu$ M) with bicarbonate anion concentrations.





Fig. 16 Interaction of hydroxide anion (OH<sup>-</sup>) with –NO<sub>2</sub> receptor (3).

## **Limit of Detection**



Fig. 17 Calibration curve for determination of bicarbonate anion in water samples. Here receptor concentration used is  $170 \mu$ M. All the experiments were carried out at 298 K.

Limit of detection (LOD) =  $3\sigma/m$ 

Here " $\sigma$ " refers to the standard deviation of blank measurements (*n*=3).

"*m*" refers to the slope of the calibration curve in the above figure.

Hence  $LOD = (3*0.000834/0.00006147) = 40.71 \mu M$ 

## **Response time of receptor**



Fig. 18 Sensor response of receptor (3) in presence of  $HCO_3$ . The studies were conducted at room temperature, with receptor concentration of (20  $\mu$ M) with 80-100  $\mu$ M of  $HCO_3$ .