Supplementary Information

for

Synthesis of substituted phenylcarbamates of *N*cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation

Juan Zhang, Xiao-Chen Wang, Wei Chen, Zheng-Wu Bai*

School of Chemistry and Environmental Engineering, Wuhan Institute of Technology,

Wuhan 430073, China

*Corresponding authors at: School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China. Tel. and fax: +86 27 87195680; E-mail address: zwbai@wit.edu.cn (Z.-W. Bai)

Table of Contents

1. Characterization of chitosan and its derivatives1
Fig. S1 ¹ H NMR spectrum of chitosan1
Fig. S2 IR spectrum (A) and ¹ H NMR spectra (B) of <i>N</i> -cyclobutylformylated
chitosan
Fig. S3. ¹ H NMR spectrum of chitosan bis(4-methylphenylcarbamate)-(N-cyclobut-
ylformamide) (CS 1)
Fig. S4 ¹ H NMR spectrum of chitosan bis(3-chloro-4-methylphenylcarbamate)-
(<i>N</i> -cyclobutylformamide) (CS 2)
Fig. S5 ¹ H NMR spectrum of chitosan bis(4-chlorophenylcarbamate)-(N-cyclobut-
ylformamide) (CS 3)
Fig. S6 ¹ H NMR spectrum of chitosan bis(3,5-dimethylphenylcarbamate)-(N-cy-
clobutylformamide) (CS 4)
Fig. S7 ¹ H NMR spectrum of chitosan bis(3-methylphenylcarbamate)-(N-cyclobu-
tylformamide) (CS 5)
Fig. S8 ¹ H NMR spectrum of chitosan bis(phenylcarbamate)-(N-cyclobutylforma-
mide) (CS 6)
Fig. S9 ¹ H NMR spectrum of chitosan bis(3-chlorophenylcarbamate)-(N-cyclobu-
tylformamide) (CS 7)
Table S1. Elemental analysis of chitosan derivatives
Table S2. Characterization of chitosan derivatives by IR
2. Enantioseparation comparison of CSPs8
Table S3. Enantioseparation results on CSPs I and II

1. Characterization of chitosan and its derivatives

¹H NMR spectra of chitosan and *N*-cyclobutylformylated chitosan were measured with deuterated trifluoroacetic acid (TFA-D) as the solvent at 25 °C. TFA-D was also employed as internal standard (δ 11.50 ppm). ¹H NMR spectra of substituted phenylcarbamates of *N*-cyclobutylformylated chitosan were measured at 90 °C with DMSO-*d*₆ as the solvent, scanning 256 times. Elemental analysis was conducted in a usual C, H and N model. IR spectra were measured with KBr pellets.

Fig. S4 ¹H NMR spectrum of chitosan bis(3-chloro-4-methylphenylcarbamate)-(cyclobutylformamide) (CS 2).

(cyclobutylformamide) (CS 4).

(cyclobutylformamide) (CS 7).

	Ca	lculated (%))	Found (%)				
Derivatives –	С	Н	N	С	Н	N		
CS 1	62.54	6.22	8.10	62.20	6.32	7.71		
$(C_{27}H_{31}N_3O_7 \cdot 0.5H_2O)$								
CS 2	56.06	5.05	7.26	55.59	5.18	6.69		
$(C_{27}H_{29}Cl_2N_3O_7)$								
CS 3	54.56	4.58	7.63	54.29	4.99	7.61		
$(C_{25}H_{25}Cl_2N_3O_7)$								
CS 4	63.72	6.64	7.69	63.32	6.65	7.28		
$(C_{29}H_{35}N_{3}O_{7}\cdot 0.5H_{2}O)$								
CS 5	62.00	6.26	8.03	61.70	6.28	7.60		
$(C_{27}H_{31}N_{3}O_{7} \cdot 0.75H_{2}O)$								
CS 6	60.66	5.80	8.49	60.16	5.91	7.95		
$(C_{25}H_{27}N_{3}O_{7}\cdot 0.75H_{2}O)$								
CS 7	53.68	4.68	7.51	53.84	4.84	7.10		
$(C_{25}H_{25}Cl_2N_3O_7 \cdot 0.5H_2O)$								

Table S1. Elemental analysis of chitosan derivatives

Derivatives	IR (KBr, cm ⁻¹) v
CS 1	3333 (-NH-), 3099-3012 (Ph-H), 2986-2864 (-C-H), 1719 (-CO ₂ -),
	1665, 1612, 1543 (-CONH-, -Ph)
CS 2	3405-3325 (-NH-), 3099-3042 (Ph-H), 2982-2863 (-C-H), 1718 (-
	CO ₂ -), 1661, 1584, 1525 (-CONH-, -Ph)
CS 3	3408-3325 (-NH-), 3119-3063 (Ph-H), 2982-2869 (-C-H), 1718 (-
	CO ₂ -), 1659, 1596, 1525 (-CONH-, -Ph)
CS 4	3331 (-NH-), 3128-3036 (Ph-H), 2982-2869 (-C-H), 1721 (-CO ₂ -),
	1661, 1602, 1525 (-CONH-, -Ph)
CS 5	3328 (-NH-), 3149-3045 (Ph-H), 2982-2861 (-C-H), 1718 (-CO ₂ -),
	1664, 1617, 1542 (-CONH-, -Ph)
CS 6	3393-3322 (-NH-), 3134-3063 (Ph-H), 2988-2866 (-C-H), 1721 (-
	CO ₂ -), 1661, 1602, 1528 (-CONH-, -Ph)
CS 7	3405-3316 (-NH-), 3119-3072 (Ph-H), 2988-2869 (-C-H), 1721 (-
	CO ₂ -), 1659, 1593, 1531 (-CONH-, -Ph)

Table S2. IR spectra data of chitosan derivatives

2. Enantioseparation comparison of CSPs

The enantioseparation capability of newly prepared CSPs was evaluated in *n*-hexane/2-propanol (90/10, v/v), *n*-hexane/ethanol (90/10, v/v) and *n*-hexane/ethanol/methanol/ (90/10, v/v) with the same chiral analytes. These capabilities were compared to those of CSPs I and II prepared from cellulose tris(3,5-dimethylphencarbamate) (CDMPC) and amylose tris(3,5-dimethylphencarbamate) (ADMPC), respectively.

No.	CSP I			CSP II			Ът	CSP I			CSP II			
	k_1	α	R _s	k_1	α	R _s	— No.	k_1	α	R _s	k_1	α	R _s	- M.P.
1	0.65(+)	1.51	1.68	1.03(+)	1.49	2.12	8	6.11(R)	2.09	3.00	7.61(R)	1.25	0.39	А
	0.54(+)	1.87	3.07	0.70(+)	1.64	2.62		1.32(R)	1.41	1.60	1.42(R)	1.28	1.19	В
	0.66(+)	1.79	3.79	0.72(+)	1.64	2.63		1.57(R)	1.21	1.37	1.05(R)	1.20	0.89	С
2	1.24(+)	1.20	1.37	1.53(-)	1.30	1.80	9	2.42(+)	1.57	2.45	5.71	1.00	0.00	А
	1.19(+)	1.46	2.94	1.15(-)	1.21	1.14		1.37(+)	2.98	6.28	1.75	1.00	0.00	В
	1.43(+)	1.79	5.00	1.09(-)	1.21	1.19		1.72(+)	2.87	6.98	1.36	1.00	0.00	С
3	1.19	1.00	0.00	2.09	1.00	0.00	10	5.16(R)	1.70	3.15	4.52(R)	1.18	1.01	А
	0.68(+)	1.06	0.28	1.34	1.00	0.00		1.22(R)	1.46	2.04	1.15(R)	1.12	0.53	В
	0.98	1.00	0.00	1.24	1.00	0.00		1.58(R)	1.27	1.45	1.10(R)	1.16	0.54	С
4	2.95(-)	1.06	0.48	3.74(+)	1.10	0.57	11	3.99	1.00	0.00	2.90(+)	1.40	2.17	А
	1.71	1.00	0.00	1.90	1.00	0.00		2.60(+)	1.08	0.48	2.06(+)	1.33	1.93	В
	2.29	1.00	0.00	1.60	1.00	0.00		2.76(+)	1.10	0.85	1.85(+)	1.34	1.96	С
5	0.63	1.00	0.00	0.95(+)	1.12	0.42	12	10.01(R)	1.45	1.75	11.74(S)	1.20	0.96	А
	0.43	1.00	0.00	0.65(+)	1.13	0.22		1.97(R)	1.28	1.33	2.25(S)	1.12	0.38	В
	0.69	1.00	0.00	0.57(+)	1.13	0.38		2.36(R)	1.21	1.47	2.50(S)	1.10	0.35	С
6	4.25	1.82	2.73	6.38	1.23	0.85	13	Retention time>120min Retention time>120min Retention time>120min			39.05	1.00	0.00	А
	2.57	3.82	7.18	3.27	1.25	1.25					24.36	1.00	0.00	В
	2.55	4.51	9.59	2.42	1.31	1.64					12.20	1.00	0.00	С
7	5.71(R)	1.27	1.46	9.85(S)	1.09	0.96	14	1.65	1.00	0.00	2.49	1.00	0.00	А
	3.23(R)	1.11	0.77	4.89	1.00	0.00		1.46	1.00	0.00	1.37	1.00	0.00	В
	4.10	1.00	0.00	3.82(R)	1.10	0.45		1.95	1.00	0.00	1.23	1.00	0.00	С

Table S3. Enantioseparation of CSP I and CSP II

Table S3 to be continued

Continu	ed Table S3													
No	CSP I			CSP II		NT	CSP I	CSP I			CSP II			
	k_1	α	R _s	k_1	α	$R_{\rm s}$	- NO	k_1	α	R _s	k_1	α	R _s	M.P.
15	1.14(S)	1.22	0.84	1.62(R)	1.34	1.60	18	4.49(S)	1.06	0.25	2.97(S)	1.06	0.29	А
	0.58(S)	1.12	0.32	0.83(R)	1.34	1.55		2.72(R)	1.35	0.80	1.73	1.00	0.00	В
	0.97	1.00	0.00	0.73(R)	1.21	0.47		1.96(R)	1.39	1.78	1.80	1.00	0.00	С
16	25.10	1.00	0.00	32.69(R)	1.30	1.27	19	5.62(2R,3S)	1.16	0.78	19.21	1.00	0.00	А
	7.73(R)	1.63	2.20	11.45(R)	1.18	0.99		4.65(2R,3S)	1.18	1.11	9.47(2R,3S)	1.29	1.81	В
	9.07(R)	1.50	2.98	7.77(R)	1.13	0.68		3.81(2R,3S)	1.17	1.16	6.53(2R,3S)	1.27	1.82	С
17	Retention	time>12	0min	17.56(R)	1.28	0.43								А
	10.37(R)	1.61	2.57	6.37(R)	1.25	0.99								В
	9.62(R)	1.79	3.63	3.94(R)	1.15	0.54								С

No.: series number of chiral analytes; M.P.: A: *n*-hexane/2-propanol (90/10, v/v); B: *n*-hexane/ethanol (90/10, v/v); C: *n*-hexane/ethanol/methanol (90/5/5, v/v/v). "R", "S", "+", "-" and "2R, 3S" refer to the first-eluted enantiomer. The elution order of analyte 6 was not available because of its low optical rotation.