Electronic Supporting Information (ESI)

Self-assembly of Nitrogen-Doped Carbon Nanoparticle: A New Ratio UV-vis Optical Sensor for High Sensitive and Selective Detection of Hg²⁺ in Aqueous Solution **

Yudi Ruan^{ab}, Lie Wu^{ab}, Xiue Jiang^a*

^aState Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry Changchun 130022, Jilin (China). E-mail: jiangxiue@ciac.ac.cn; Fax: (+86) 431-85262065 ^bUniversity of the Chinese Academy of Sciences Beijing 100049 (China)

Fig. S1 The N-CNPs were used as a fluorescence sensor to detect Hg²⁺. (A) Fluorescence emission spectra of N-CNPs dispersion in the presence of different Hg²⁺ concentrations (from top to bottom: 0, 0.025, 0.05, 0.10, 0.15, 0.20, 0.60, 2.0, 6.0, 10.0, 16.0, 24.0, 30.0, 36.0 μ M). (B) Plots of the values of F/F₀ versus the concentrations of Hg²⁺, Where F, F₀ are the fluorescence intensities of N-CNPs at 420 nm in the absence and presence of Hg²⁺. (C) Fluorescence emission spectra of N-CNPs dispersion in the presence of different metal ions. The concentrations of all the metal ions are 100 μ M and the final

concentration of the N-CNPs is 30 μ g/mL. (D) Selectivity of the N-CNPs-based fluorescent system: the value of F/F₀ is derived from Figure C. The concentrations of all the metal ions are 100 μ M and the final concentration of the N-CNPs is 30 μ g/mL.

The N-CNPs dispersion exhibits a strong PL peak at 420 nm in the absence of Hg²⁺ when excited by 355 nm UV light. The presence of Hg²⁺, however, results in an obvious decrease of fluorescence intensity, indicating that the Hg²⁺ can effectively quench the fluorescence of N-CNPs. Figure S1A shows the fluorescent spectra of N-CNPs dispersion after adding various concentrations of Hg²⁺. With the addition of Hg²⁺, the fluorescence intensity at 420 nm was gradually decreased, indicating that the fluorescence intensity of the mixture is sensitive to Hg²⁺ concentration. The fitting line of F₀/F (F, F₀ are the fluorescence intensities of N-NCPs at 420 nm in the absence and presence of Hg²⁺, respectively) versus the concentrations of Hg²⁺ shows two linear regions at 0–0.2 μ M and 0.6–36 μ M, respectively. The detection limit is estimated to be 15.2 nM, which is 10 times higher than that of UV-vis sensor.

For the selectivity study, the same concentration (100 μ M) of different metal ions, including Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺, Hg²⁺, Fe³⁺, Cd²⁺, Bi³⁺, Cs⁺, Sr²⁺, Ba²⁺, W⁶⁺, Hg²⁺ were added to the N-CNPs dispersion respectively. Figure 1D shows that although Hg²⁺ can decrease the fluorescent intensity greatest, Cu²⁺ and Fe³⁺ will also decrease the fluorescent intensity slightly.