Supplementary Material

Discriminating Unalike Single Nucleobase Mismatches using a Molecularly Resolved, Label-free, Interfacial LNA-based Assay

Hiya Lahiri, Sourav Mishra, Tanushree Mana and Rupa Mukhopadhyay*

Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

Fig. S1: RAIR spectra of DNA and LNA layers on gold(111) surface acquired for the same probe concentration $0.1\mu M$ and the same incubation time 4 h.

Assignment of the primary IR frequencies of that differentiate between DNA and LNA cases

ASSIGNMENT	DNA	LNA
2997 ¹		V(C-H)aromatic, present in nucleobases
2965-2968 ¹	Vasym(CH ₃), present in thymine bases	Vasym(CH ₃), present in thymine bases, peak is more intense than in case of DNA
2937 ¹		Vasym(CH ₂), present in hexyl spacer and locked sugar moieties
28811		Vsym(CH ₂)
1734-1743 ^{2,3}	v(C=O) nucleobase, present in thymine and guanine	v(C=O), present in thymine and guanine, peak much sharper and intense
1607-1654 ^{2,3}	v(C=O) nucleobase, present in cytosine and adenine	v(C=O), present in cytosine and adenine, peak much sharper and intense
1614 ⁴		$\delta(-NH_2)$, v(C=N), present in nucleobases
1544 ⁴		v(C=C), v(C=N), present in nucleobases
1458 ⁴		purine imidazolic ring vib.
1416 ⁵⁻⁷		sugar vib. (C3'- endo)
1275 ⁸		thymidine (N3–H bending vib.)
11919		sugar phosphate backbone vib. and N-type sugar conformation
1039-1096 ¹⁰	v(PO ₂), sugar-phosphate backbone vibration	v(PO ₂) ⁻ , sugar-phosphate backbone vibration, peak much sharper and intense

References:

1. Silverstein, R.; Webster, F. Spectroscopic Identification of Organic Compounds, 6th ed.; John Wiley & Sons Inc: New York, 2006; Chapter 3.

2. Wang, Z.; Liu, D.; Dong, S. In-situ FTIR study on adsorption and oxidation of native and thermally denatured calf thymus DNA at glassy carbon electrodes. Biophys. Chem. 2001, 89, 87.

3. Yamada, T.; Shirasaka, K.; Takano, A.; Kawai, M. Adsorption of cytosine, thymine, guanine and adenine on Cu(1 1 0) studied by infrared reflection absorption spectroscopy. Surf. Sci. 2004, 561, 233.

4. Mateo-Martí, E.; Briones, C.; Pradier, C. M.; Martín-Gago, J. A. A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens. Bioelectron. 2007, 22, 1926.

5. Taillandier, E.; Liquier, J. Infrared spectroscopy of DNA. Methods Enzymol. 1992, 211, 307.

6. Liquier, J.; Taillandier, E. In Infrared Spectroscopy of Biomolecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss, Inc: New York, 1996; p 131.

7. Taillandier, E.; Peticolas, W. L.; Adam, S.; Huynh-Dinh, T.; Igolen, J. Polymorphism of the d(CCCGCGGG)2 double helix studied by FT-i.r. spectroscopy. Spectrochim. Acta 1990, 46A, 107.

8. Liquier, J.; Akhebat, A.; Taillandier, E.; Ceolin, F.; Huynh Dinh, T.; Igolen, J. Characterization by FTIR spectroscopy of the oligoribonucleotide duplexes r(A-U)6 and r(A-U)8. Spectrochim. Acta 1991, 47A, 177.

9. Pohle, W.; Fritzsche, H. A new conformation-specific infrared band of A-DNA in films. Nucleic Acids Res. 1980, 8, 2527.

10. Shimanouchi, T.; Tsuboi, M.; Kyogoku, Y. In The Structure and Properties of Biomolecules and Biological Systems, Advances in Chemical Physics; Duchesne, J., Eds.; Interscience: London, 1964; p 435.

Fig. S2: Representative plots for on-surface melting temperature of LNA-DNA duplex (A) for fully matched LNA-DNA duplex, $T_m = 52.1$ °C; and [B-G] for single mismatch at the central position (B) G: G, $T_m = 31$ °C; (C) G: T, $T_m = 31.4$ °C; (D) T: G, $T_m = 33$ °C; (E) A: G, $T_m = 30$ °C; (F) A: C, $T_m = 31.1$ °C; (G) C: A, $T_m = 34.3$ °C; (H) C: T, $T_m = 33.8$ °C; (I) C: C, $T_m = 33.4$ °C; (J) A: A, $T_m = 30.4$ °C; (K) T: T, $T_m = 31.8$ °C.

Fig. S3: Unbinding force values for fully matched as well as the mismatched combinations presented including the standard errors from mean.