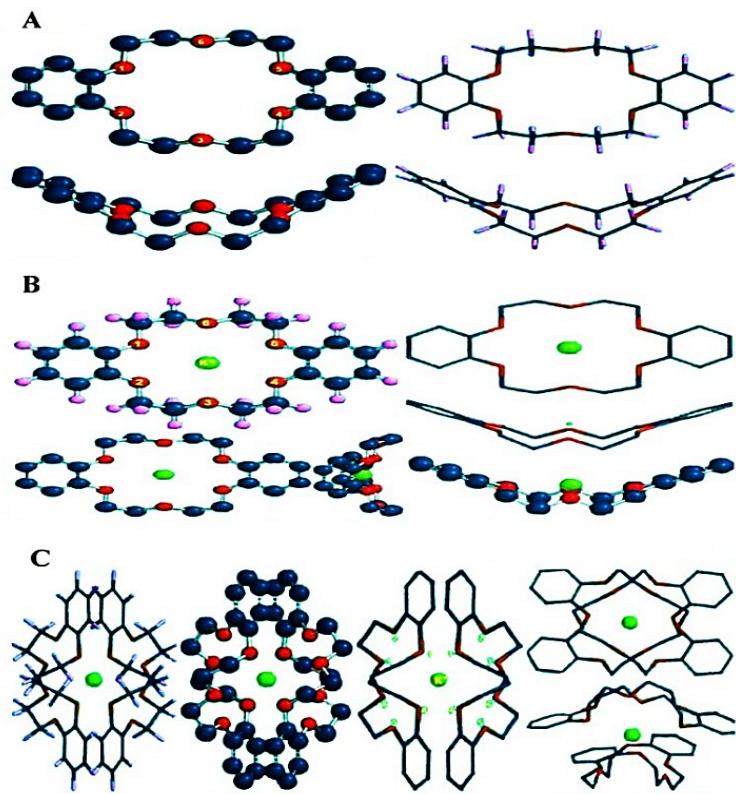


Supplementary data:

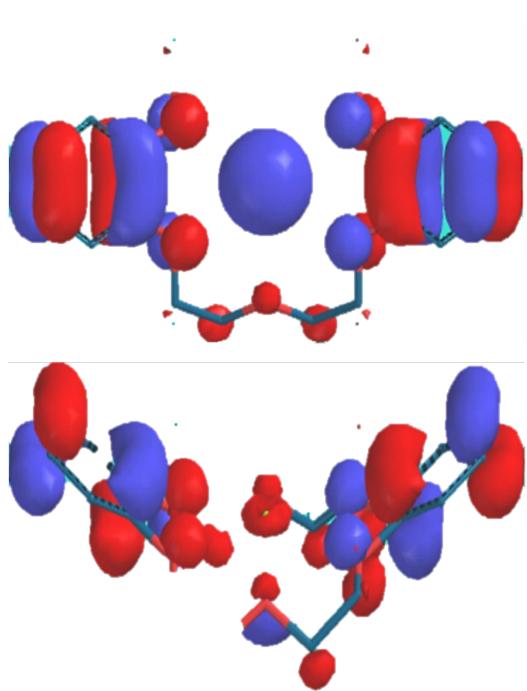
Interrupting flux of delocalized electrons on the dibenzo-18-crown-6-embedded graphite sheet and its relative counteraction in the presence of potassium ions


Mojtaba Shamsipur, Avat (Arman) Taherpour and Afshin Pashabadi*

Index

Computational studies on structures of the DB18C6 (I) and the complexes 1:1 and 2:1 of ligand with K+	2
(Table S1)	3
Fig. S1	4
Fig. S2	5
Fig. S3	6

Computational studies on structures of the DB18C6 and the complexes 1:1 and 2:1 of ligand with K⁺


The calculations on the structures of the DB18C6 and the complexes 1:1 and 2:1 of ligand with K⁺ (complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺) were made by the appropriate QM-DFT methods. The structures of the ligand (**I**) and the complexes were optimized by DFT-B3LYP/6-31G* method [14]. The results of the selected structural data for the ligand (**I**) and the complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺, *i.e.* bond lengths (in Å), bond angles (in °) and the point groups were determined and shown in the Figure S1A for ligand, Figure S1B for complex [DB18C6].K⁺ and Figure S1C for complex [DB18C6]₂.K⁺. The HOMO and LUMO orbital shapes and electrostatic charges of the ligand DB18C6 and the complexes 1:1 and 2:1 of ligand with K⁺ (complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺) are shown in Figure S2A, S2B and S2C. Table S1 shows the selected structural data of the ligand DB18C6 and complexes of the ligands with K⁺. The optimized structures of the complexes by B3LYP/6-31G* method demonstrated that the point groups of the complexes are: [DB18C6].K⁺ (C_1) and [DB18C6]₂.K⁺ (D_2). The ligand DB18C6 was attracted around the K⁺ ion at the complexes 1:1 and 2:1 of ligand with K⁺ (complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺). The energy of the HOMO-LUMO gap of the complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺ were calculated: 5.60 and 5.84eV, respectively. The lowest and highest O-K⁺ bond lengths in the complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺ are: [2.754 & 2.781] and [3.054 & 3.190] Å, respectively. The dipole moments of the complexes [DB18C6].K⁺ and [DB18C6]₂.K⁺ are: 1.26 and 0.02 Debye, respectively.

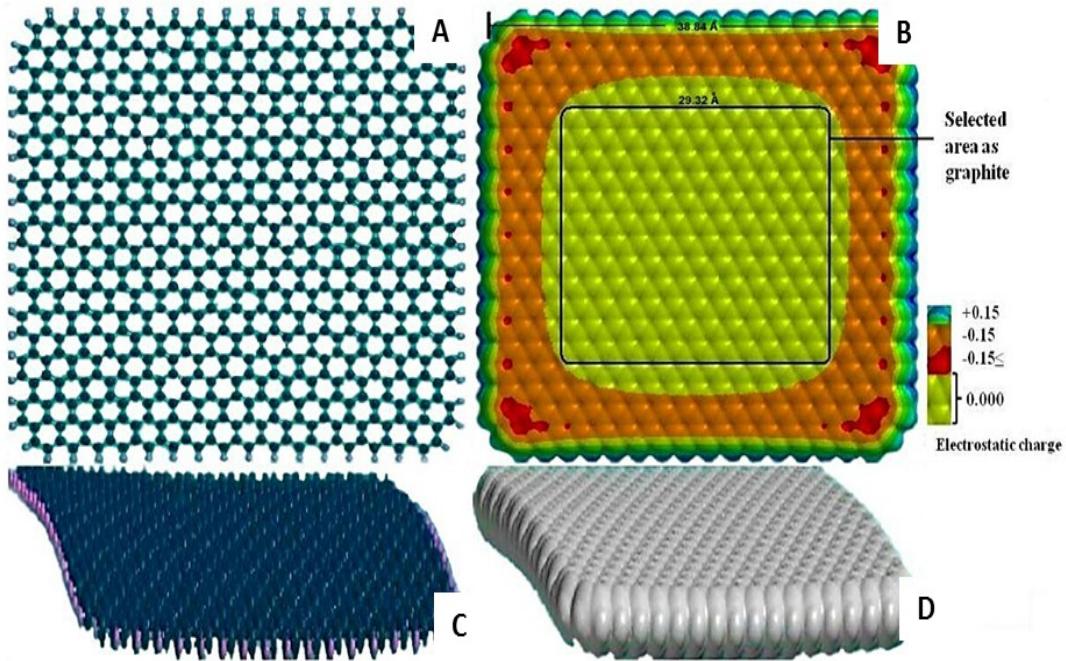

Fig. S1. (A) The optimized structure of the ligand DB18C6 by B3LYP/6-31G* method. The point group is C_{2v}. (B) The optimized structure of the complex (1:1) of the ligand DB18C6 and K⁺ by B3LYP/6-31G* method. The point group is C₂. (C) The optimized structure of the complex (2:1) of the ligand DB18C6 and K⁺ by B3LYP/6-31G* method. The point group is D₂.

Table 1. The selected structural data of the ligand and complexes 1:1 and 2:1 of the ligand DB18C6 with K⁺.

Selected data	Ligand-I (DB18C6)	[DB18C6].K ⁺	[DB18C6] ₂ .K ⁺
Point group	<i>C</i> _{2v}	<i>C</i> ₂	<i>D</i> ₂
Bond length (Å)			
O1-O2	2.584	2.602	2.674
O1-O3	4.802	4.675	3.715
O1-O4	5.540	5.459	4.948
O1-O5	4.900	4.799	5.006
O1-O6	2.900	2.794	2.814
O3-O6	5.671	5.402	4.263
O1-O1'	-	-	4.153
O2-O2'	-	-	4.153
O3-O3'	-	-	5.078
O4-O4'	-	-	4.153
O5-O5'	-	-	4.153
O6-O6'	-	-	5.078
O1-K	-	2.754	3.139
O2-K	-	2.754	3.054
O3-K	-	2.781	3.190
O4-K	-	2.754	3.139
O5-K	-	2.754	3.054
O6-K	-	2.781	3.190
O1'-K	-	-	3.054
O2'-K	-	-	3.139
O3'-K	-	-	3.190
O4'-K	-	-	3.054
O5'-K	-	-	3.139
O6'-K	-	-	3.190
Bond angle (°)			
O1KO2	-	56.38	51.14
O1KO3	-	115.27	100.65
O1KO4	-	164.68	149.78
O1KO5	-	121.21	107.85
O1KO6	-	60.62	55.06
O1'KO2'	-	-	51.14
O1'KO3'	-	-	100.65
O1'KO4'	-	-	149.78
O1'KO5'	-	-	107.85
O1'KO6'	-	-	55.06
Energy data			
<i>E</i> _{HOMO} (eV)	-5.26	-8.53	-8.13
<i>E</i> _{LUMO} (eV)	0.52	-2.93	-2.29
$\Delta E_{HOMO-LUMO}$ (eV)	5.78	5.60	5.84
<i>Hardness</i> (η)	2.89	2.80	2.92
Dipole moment (D)	1.90	1.26	0.02
ΔG_f (kcal.mol ⁻¹)	-	-76.46	-99.09

Fig. S2. The HOMO-LUMO interactions between ligand [DB18C6] and K^+ ion.

Fig. S3. The calculated model of graphene surface by molecular mechanics MMFF94 method. **A)** Ball and spoke model, surface form, **B)** Ball and spoke model, side form, **C)** Electrostatic potential model with natural charges and **D)** Electron density model. In (C) has shown a quadrangle (with dimensions $38.84 \times 38.84 \text{ \AA}$). The main area (yellowish area) as graphite has demonstrated in (C) with dimensions $29.32 \times 29.32 \text{ \AA}$. This area has selected for the modeling. The electrostatic charge on carbon atoms is 0.000 in this selected area.