Dual-emitting quantum dots/carbon nanodots-based nanoprobe for selective and sensitive detection of Fe³⁺ in cells

Chuanxi Wang, ^a Yijun Huang, ^a Kaili Jiang, ^a Mark G. Humphrey^b and Chi Zhang*^{a, b} ^aChina-Australia Joint Research Centre for Functional Molecular Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China ^bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

E-mail address: chi.zhang@jiangnan.edu.cn; chi.zhang@anu.edu.au

Fig S1. The fluorescence spectra of CNDs-doped TiO_2 microspheres in the physiological ionic strength (NaCl, 200 mM) and physiological pH (pH=5~9).

Fig S2. X–ray photoelectron spectroscopy (XPS) spectra of Cd 3d (a) and Se 3d (b) of dual-emission nanosensor.

Fig S3. Fluorescence spectra of dual-emission nanoparticles upon addition of representative metallic ions.

Fig S4. Fluorescence spectra of dual-emission nanoparticles upon addition of Fe^{3+} and Fe^{2+} with same concentration (10⁻⁴ M).

Fig S5. The anti-interference ability study of dual-emission nanoprobe upon addition of Fe³⁺ (100 μ M) and other metal ions (100 μ M).

Fig S6. Viability of 293T cells in cell medium for 24 h after incubation with different concentrations of fluorescent microsphere.