Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Supporting Information

Endonuclease IV cleaves apurinic/apyrimidinic sites in single-stranded DNA and its application for biosensing

Xiang-Juan Kong, Shuang Wu, Yao Cen, Ting-Ting Chen,* Ru-Qin Yu and Xia Chu*

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

E-mail: xiachu@hnu.edu.cn; chenting1104@hnu.edu.cn

Name	Sequences(5'-3')
Linear probe	CCATGCAGTCAGTGAGTGNCAATGGCG ddC
Control probe	CCATGCAGTCAGTGAGTGTCAATGGCG ddC
	р-
Padlock probe	TGTCTTCGTCTGCACTCACTGACTATACAATCTACT
	ACCTCAACTCTCGCTCTAC
Linear probe-C	CCATGCAGTCAGTGAGTCNCAATGGCG ddC
Linear probe-A	CCATGCAGTCAGTGAGTANCAATGGCG ddC
Linear probe-T	CCATGCAGTCAGTGAGTTNCAATGGCG ddC
Padlock probe-C	р-
	TGTCTTCGTCTGGACTCACTGACTATACAATCTACT
	ACCTCAACTCTCGCTCTAC
	р-
Padlock probe-A	TGTCTTCGTCTGTACTCACTGACTATACAATCTACT
	ACCTCAACTCTCGCTCTAC
	р-
Padlock probe-T	TGTCTTCGTCTGAACTCACTGACTATACAATCTACT
	ACCTCAACTCTCGCTCTAC
Ligation probe	CAGACGAAGACAGTAGAGCGAGA
Complementary probe	GCGCCATTGACACTCACT
Biotin-DNA	CAT GCA GTC AGT GAG TGN CTT TAC TTT TTT
	TTT TTT TT-biotin
Signal probe	ATACAAT(FAM)CTACT(Dabcyl)ACCTCAAC

Table 1. Sequences of all DNA molecules used in this research^a

^a N is the tetrahydrofuran abasic site mimic, ddC is 2',3'-dideoxycytidine. The signal probes were the fluorescence-quenched probe with 4-(4-dimethylaminophenyl) diazenylbenzoic acid (Dabcyl) quencher and fluorescein (FAM) fluorophore.

Fig. S1. Comparison of the fluorescence intensity ratio of the sensing system to different DNA bases at the 5' side of the AP site. The concentration of Endo IV was fixed at 5 U/mL.

Fig. S2. Schematic illustration of Exo III-aided RCR dual signal amplification reaction for Endo IV activity assay to AP sites in dsDNA. A) Endo IV cleaves AP site in the formed AP:A base pair and releases primer probe containing 3' hydroxyl to initiate RCR reaction. B) Exo III-aided cyclic signal amplification reaction.

Fig. S3. Fluorescence spectra responses of Endo IV cleaving AP sites activity in ssDNA and dsDNA using Exo III-aided RCR dual signal amplification strategy. Curve a, dsDNA (25 nM)+Endo IV(5 U/mL); curve b, ssDNA (25 nM)+Endo IV(5 U/mL); curve c, dsDNA (25 nM); curve d, ssDNA (25 nM).

Fig. S4 Specificity evaluation of the strategy for Endo IV detection. Conditions: Endo IV, 5 U/mL; SA, 0.05 μ M; TDG and UDG, 10 U/mL. Error bars are standard deviation of three repetitive experiments.

Samples a	added(U/mL)) found(U/mL)	recovery	RSD(n=3)	
1	0.1	0.105	105%	3.2%	
2	0.3	0.306	102%	4.5%	
3	0.5	0.476	95.2%	4.9%	
4	0.8	0.793	99.1%	3.1%	

Table S2. Recovery detection of Endo IV activity in diluted HeLa cell lysate.^a

^{*a*}The concentration of the cell line was 1×10^4 cells/mL.

Fig. S5 Specificity evaluation of the strategy for SA detection. Conditions: SA, 1 nM; BSA, Thrombin and HRP, 10 nM. Error bars are standard deviation of three repetitive experiments.

Table S3. Comparison of different analytical methods for SA detection sensitivity	
by our strategy and those reported in literature	

Analytical Method	Detection Limit (pM)	Ref.
Label-free fluorescent method using SYBR Green I without amplification	100	1
Poly T templated Cu NPs based fluorescent biosensor without amplification	100	2
Dual-color fluorescent biosensor without amplification	138	3
Solid-state Ag/AgCl process based amplified electrochemical assay	10	4
Endo IV-mediated signal amplification coupled with rolling circle replication	2.5	This work

Samples	added(nM)	found(nM)	recovery	RSD(n=3)	
1	0.01	0.093	93%	3.7%	
2	0.05	0.052	104%	2.9%	
3	0.1	0.097	97%	4.6%	
4	0.5	0.497	99.4%	3.2%	

Table S4. Recovery detection of SA in 2% human sera samples

References

- Z. Wu, H. Q. Wang, M. Gou, L. J. Tang, R. Q. Yu and J. H. Jiang, *Anal. Chem.*, 2011, 83, 3104-3111.
- H. B. Wang, H. D. Zhang, Y. Chen and Y. M. Liu, *Biosens.Bioelectron.*, 2015, 74, 581-586.
- C. H. Chen, X. Xiang, Y. F. Liu, G. H. Zhou, X. H. Ji and Z. K. He, Biosens.Bioelectron., 2014, 58, 205-208.
- Q. Wang, B. Y. Jiang, J. Xu, J. Q. Xie, Y. Xiang, R. Yuan and Y. Q. Chai, Biosens.Bioelectron., 2013, 43, 19-24.