Supporting Information

A ratiometric fluorescence nanosensor for highly selective and sensitive detection of selenite

Linfeng Chen^a, Xike Tian^{a,*}, Yuan Zhao^a, Yong Li^{a,*}, Chao Yang^a,

Zhaoxin Zhou^a, Xiangwen Liu^{a,b}

^a Faculty of Material Science and Chemical Engineering, China University of Geosciences,

Wuhan 430074, P R China

^b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Wuhan 430074, P R China

Fig. S1 Absorption spectra of CdTe QDs and CdTe@SiO₂. Inset: the enlarged drawing between 500-700nm. The measurements were operated in 6:4 isopropanol/H₂O solutions.

Fig. S2 Excitation spectrum of Se-DAB (black line) and the emission spectrum of Se-nanosensor (red line), excited at 415nm. The measurements were operated in 6:4 isopropanol/H₂O solutions.

Fig. 3 The effect of different pH on the fluorescence intensity ratio of the Se-nanosensor. The inset images are their corresponding fluorescence images taken under a UV lamp (365 nm).

Fig. S4 (a) The stability of the DAB-CdTe@SiO₂ QDs nanosensor in the acetic acid-sodium acetate buffer solution (pH=4.5, 0.02M). (b) Fluorescence intensity ratio (F_{530}/F_{635}) of the nanosensor under consecutive irradiation for 60 min. The measurements were operated in 6:4 isopropanol/H₂O solutions.

Fig. S5 The fluorescence response of the ratiometric nanosensor upon the addition of different concentration of acetic acid-sodium acetate buffer solution.

Fig. S6 Absorption spectrum of CdTe@SiO₂ QDs (red line) and emission spectrum of Se-DAB (black line), excited at 415nm. The measurements were operated in 6:4 isopropanol/H₂O solutions.

Fig. S7 Plot of fluorescence intensity ratio of F_{530}/F_{635} versus the concentration of SeO₃²⁻. Inset: linearity of the F_{530}/F_{635} with respect to the SeO₃²⁻ concentration over the range of 0-2.5µM.

Fig. S8 (a) Fluorescence response of the ratiometric nanosensor to different metal ions (10μ M for all ions, excitation at 415nm). The inset images were taken under a 365nm UV lamp. (b) The selectivity of the ratiometric nanosensor to various common metal ions. The black bars represent addition of different metal ions at 10μ M, and the red bars represent the change of emission occurred following the subsequent addition of 10μ M of Se (IV) to the above solutions

Fig. S9 Absorption spectra of nanosensor with various interference substances (3 μ M) in isopropanol and water (v/v = 6/4).

Fig. S10 (a) The fluorescence spectra of the recovery test in tap water. (b) The fluorescence spectra of the recovery test in Yangtze River water.