Improvement in ionization efficiency of direct analysis in real timemass spectrometry (DART-MS) by corona discharge

Kanako Sekimoto1*, Motoshi Sakakura2, Takatomo Kawamukai2, Hiroshi Hike2, Teruhisa

Shiota², Fumihiko Usui², Yasuhiko Bando² and Mitsuo Takayama¹

¹Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku,

Yokohama, Kanagawa, 236-0027 Japan

² AMR Inc., 13-18 Nakane-2, Meguro-ku, Tokyo, 152-0031 Japan

Supporting Information

	Ion species		Nominal mass	m/z Measured exact mass	Calculated evact mass	Accuracy [ppm]	
		$[A_{cn} + H]^+$	122	122 0606	122 0608	0.0300	
	a h	$[Asii + H]^+$	205	205.0000	205.0008	-0.9300	
	5	$[Trp + H + O]^+$	205	203.0909	203.0972	-1.9955	
		$[\text{Trp} + \text{H} + 2\text{O}]^+$	237	237.0870	237.0866	-1.7670	
		$[Trp + H - NH_3]^+$	188	188.0704	188.0706	-1.0910	
	c	[Gly - H]	74	74.0247	74.0248	1.0077	
		[Gly - 2H - H] [*]	72	72.0092	72.0091	1,1812	
		C ₁ H ₂ O ₃ ⁻	89	89.0244	89.0244	-0.4739	
	d	[Tvr - H]	180	180.0666	180.0666	0.1536	
		[Tyr - H + O]	196	196.0615	196.0615	-0.1743	
		[Tyr - H - H2CO2]	134	134.0612	134.0611	0.3006	
		$[Tyr + C_3H_5O_3]^{\circ}$	270	270.0982	270.0983	-0.4745	
rigure o		C ₃ H ₅ O ₃ :	89	89.0244	89.0244	-0.4739	
(Q Exactive [™]	е	[Asn + H] ⁺	133	133.0606	133.0608	-0.9300	
Orbitrap [™] MS)	f	[Trp + H]*	205	205.0969	205.0972	-1.0969	
		$[Trp + H + O]^+$	221	221.0916	221.0921	-1.9955	
		$[Trp + H + 2O]^+$	237	237.0870	237.0866	-1.7670	
		[Trp + H - NH ₃] ⁺	188	188.0704	188.0706	-1.0910	
	g	[Gly - H] ⁻	74	74.0247	74.0248	1.0077	
		[Gly - 2H - H]	72	72.0092	72.0091	1.1812	
		C ₃ H ₅ O ₃	89	89.0244	89.0244	-0.4739	
	h	[Tyr - H] ⁻	180	180.0666	180.0666	0.1536	
		[Tyr - H + O] ⁻	196	196.0615	196.0615	-0.1743	
		[Tyr - H - H ₂ CO ₂] ⁻	134	134.0612	134.0611	0.3006	
		$[Tyr + C_3H_5O_3]$	270	270.0982	270.0983	-0.4745	
		C ₃ H ₅ O ₃ ⁻	89	89.0244	89.0244	-0.4739	
	a	C ₆ H ₁₅ O ₃ ⁻	135	135.1006	135.1021	-11.1	
	b	$[PD + O - 3H]^+$	225	225.2251	225.2218	14.7	
Figure 7		C ₆ H ₁₅ O ₃ ⁻	135	135.1006	135.1021	-11.1	
(Synant G	c	C ₆ H ₁₅ O ₃ ⁻	135	135.1006	135.1021	-11.1	
Q-TOF-MS)	d	[TD + O - 3H] ⁺	197	197.1924	197.1905	9.6	
	e	$[PD + O - 3H]^+$	225	225.2251	225.2218	14.7	
	f	$[HD + O - 3H]^+$	253	253.2570	253.2531	15.4	
	a	$[Gly + H]^+$	76	76.0392	76.0393	-0.8544	
	b	[Asp + H] ⁺	134	134.0447	134.0448	-0.7952	
		$[Asp + H - H_2O]^+$	116	116.0342	116.0342	-0.3971	
	с	$[Tyr + H]^+$	182	182.0809	182.0812	-1.2122	
		$[Tyr + H + O]^+$	198	198.0758	198.0761	-1.4860	
		$[Tyr + H - H_2CO_2]^+$	136	136.0756	136.0757	-0.8819	
	d	$[Ala + H]^+$	90	90.0549	90.0550	-0.9440	
	e	$[Phe + H]^+$	166	166.0860	166.0863	-1.7571	
		$[Phe + H - H_2CO_2]^+$	120	120.0805	120.0808	-1.9710	
Figure S2	f	$[Met + H]^+$	150	150.0580	150.0583	-2.3060	
OF CIM		$[Met + H + O]^+$	166	166.0530	166.0532	-1.3530	
(Q Exactive [™] orbitran [™] MS)	g	[Gly + H]*	76	76.0392	76.0393	-0.8544	
ionuap Mis)	h	[Asp + H] ⁺	134	134.0447	134.0448	-0.7952	
		$[Asp + H - H_2O]^+$	116	116.0342	116.0342	-0.3971	
	i	$[1yr + H]^{+}$	182	182.0809	182.0812	-1.2122	
		$[1yr + H + O]^+$	198	198.0758	198.0761	-1.4860	
		$[\mathrm{Tyr} + \mathrm{H} - \mathrm{H}_2\mathrm{CO}_2]^+$	136	136.0756	136.0757	-0.8819	
	j	[Ala + H]*	90	90.0549	90.0550	-0.9440	
	k	$[Phe + H]^+$	166	166.0860	166.0863	-1.7571	
		$[Phe + H - H_2CO_2]^+$	120	120.0805	120.0808	-1.9710	
1	1	$[Met + H]^+$	150	150.0580	150.0583	-2.3060	
1		$[Met + H + O]^+$	166	166 0530	166 0532	-1 3530	

1	a	[Asn - H]	131	131.0463	131.0462	0.4170
		[Asn - 2H - H] ⁻	129	129.0309	129.0306	2.2351
		C3H5O3.	89	89.0244	89.0244	-0.4739
	b	[Asp - H]	132	132.0301	132.0302	-0.5130
		[Asp - H - NH]	115	115.0037	115.0037	-0.2766
		С.Н.О.:	89	89 0244	89 0244	-0 4739
	c	[Trn - H]*	203	203.0828	203.0826	0 7153
	۲.	[Trp H + O]	210	219.0776	219.0775	0.7135
1		$[T_{m} H + 2O]$	215	215.0770	217.0775	0.2411
		[Trp - H + 20]	255	255.0725	255.0724	0.2749
		[Irp - H + 30]	251	251.00/4	251.0075	0.3517
		$[\mathbf{Irp} + \mathbf{C}_3\mathbf{H}_5\mathbf{O}_3]$	293	293.1145	293.1143	0.8168
		C ₃ H ₅ O ₃	89	89.0244	89.0244	-0.4739
	d	[Ala - H] [*]	88	88.0404	88.0404	0.2570
		[Ala - 2H - H] ⁻	86	86.0250	86.0248	2.3477
		C ₃ H ₅ O ₃ ⁻	89	89.0244	89.0244	-0.4739
	e	[Phe - H] ⁻	164	164.0718	164.0717	0.3827
		[Phe - 2H - H] ⁻	162	162.0563	162.0561	1.5819
		[Phe - H + O] ⁻	180	180.0667	180.0666	0.2992
		C ₃ H ₅ O ₃ ⁻	89	89.0244	89.0244	-0.4739
	f	[Met - H] ⁻	148	148.0438	148.0438	0.3200
		[Met - 2H - H]	146	146.0282	146.0281	0.5990
Figure S3		[Met - H + O]	164	164.0387	164.0387	0.2000
(O Exactive TM		$[Met + C_3H_5O_3]^2$	238	238.0757	238.0755	0.8960
(Q Exactive [™] Orbitran [™] MS)		C ₃ H ₅ O ₃	89	89.0244	89.0244	-0.4739
Sibilitap (MS)	g	[Asn - H]	131	131.0463	131.0462	0.4170
		[Asn - 2H - H]	129	129.0309	129.0306	2.2351
	h	[Asp - H]	132	132.0301	132.0302	-0.5130
		Asp - H - NH	115	115.0037	115.0037	-0.2766
	i	[Trn - H]	203	203.0828	203.0826	0.7153
}	•	[Trp - H + O]	200	219 0776	219 0775	0.2411
		[Trp H + 2O]	215	215.0776	212.0775	0.2411
		[11p - n + 20]	255	255.0725	255.0724	0.2/49
		[1rp - n + 30]	251	201.00/4	251.00/5	0.351/
		$[1rp + C_3H_5O_3]^2$	293	293.1145	293.1143	0.8168
		C ₃ H ₅ O ₃	89	89.0244	89.0244	-0.4739
	J	[Ala - H]	88	88.0404	88.0404	0.2570
		[Ala - 2H - H] ⁻	86	86.0250	86.0248	2.3477
		C ₃ H ₅ O ₃ ⁻	89	89.0244	89.0244	-0.4739
	h	[Phe - H] ⁻	164	164.0718	164.0717	0.3827
		[Phe - 2H - H] ⁻	162	162.0563	162.0561	1.5819
		[Phe - H + O] ⁻	180	180.0667	180.0666	0.2992
		C ₃ H ₅ O ₃ ⁻	89	89.0244	89.0244	-0.4739
			4.40	148 0438	148.0438	0.3200
	1	[Met - H] ⁻	148	140.0450		
	l	[Met - H] ⁻ [Met - 2H - H] ⁻	148 146	146.0282	146.0281	0.5990
	1	[Met - H] ⁻ [Met - 2H - H] ⁻ [Met - H + O] ⁻	148 146 164	146.0282	146.0281 164.0387	0.5990 0.2000

Nominal mass

Ion species

m/z

Measured exact mass Calculated exact mass

Accuracy

[ppm]

Table S1. Exact masses of the analyte-related ions observed in each mass spectrum shown in Figs. 6, 7, S2 and S3 and correponding accuracy.

Figure S1. Visible spectrum of purple-glowing He gas flow shown in Fig. 1b.

corona – DART

Figure S2. Positive-ion mass spectra of Gly, Asp, Tyr, Ala, Phe and Met obtained by (a - f) DART or (g - l) corona-DART ionization coupled with a Q ExactiveTM OrbitrapTM mass spectrometer. *AI* represents the absolute intensity (arbitrary units) of a given ion. The exact masses of the analyte-related ions observed in each mass spectrum and the corresponding accuracy are summarized in Table S1.

corona – DART

Figure S3. Negative-ion mass spectra of Asn, Asp, Trp, Ala, Phe and Met obtained by (a - f) DART or (g - l) corona-DART ionization coupled with a Q ExactiveTM OrbitrapTM mass spectrometer. The ions with asterisk (*) correspond to deprotonated lactic acid as negative background ions. *AI* represents the absolute intensity (arbitrary units) of a given ion. The exact masses of the analyte-related ions observed in each mass spectrum and the corresponding accuracy are summarized in Table S1.

Figure S4. Positive-ion mass spectra of (a) Gly, (b) Asn, (c) Asp, (d) Tyr, (e) Trp, (f) Ala, (g) Phe and (h) Met obtained via corona-DART ionization coupled with a LCQ ion-trap mass spectrometer. The ions with asterisks (*) correspond to positive background ions. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S5. Negative-ion mass spectra of (a) Gly, (b) Asn, (c) Asp, (d) Tyr, (e) Trp, (f) Ala, (g) Phe and (h) Met obtained by corona-DART ionization coupled with a LCQ ion-trap mass spectrometer. The ions with asterisks (*) correspond to deprotonated lactic acid as negative background ions. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S6. Positive-ion mass spectra of Gly, Asn, Asp and Tyr obtained by (a - d) DART or (e - h) corona-DART ionization coupled with a LCMS-2020 quadrupole mass spectrometer. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S7. Positive-ion mass spectra of Trp, Ala, Phe and Met obtained by (a - d) DART or (e - h) corona-DART ionization coupled with a LCMS-2020 quadrupole mass spectrometer. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S8. Negative-ion mass spectra of Gly, Asn, Asp and Tyr obtained by (a - d) DART or (e - h) corona-DART ionization coupled with a LCMS-2020 quadrupole mass spectrometer. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S9. Negative-ion mass spectra of Trp, Ala, Phe and Met obtained by (a - d) DART or (e - h) corona-DART ionization coupled with a LCMS-2020 quadrupole mass spectrometer. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S10. Positive-ion mass spectra of *n*-tridecane obtained with (a) DART and (b) corona-DART ionization coupled with a LCQ Deca XP ion-trap mass spectrometer. The ion with an asterisk (*) corresponds to the positive background ion. *AI* represents the absolute intensity (arbitrary units) of a given ion.

Figure S11. Positive-ion mass spectra of 3 different alkanes obtained with DART and corona-DART ionization coupled with a LCMS-2020 quadrupole mass spectrometer. The experimental conditions used (analyte, ionization method) were (a) (*n*-tridecane, DART), (b) (*n*-pentadecane, DART), (c) (*n*-heptadecane, DART), (d) (*n*-tridecane, corona-DART), (e) (*n*-pentadecane, corona-DART) and (f) (*n*-heptadecane, corona-DART). *AI* represents the absolute intensity (arbitrary units) of a given ion.