Supporting Information

Gas-Diffusion Microfluidic Paper-Based Analytical Device (µPAD) Coupled with

Portable Surface-Enhanced Raman Scattering (SERS): Facile Determination of

Sulphite in Wines

Miao Chen¹, Hua Yang¹, Liya Rong¹, Xiaoqing Chen*,¹

1 College of Chemistry and Chemical Engineering, Central South University,

Changsha 410083, China

*Corresponding author: Tel:/fax: +86-731-88830833.

E-mail address: xqchen@csu.edu.cn

Figure S1. The Raman signal intensities of the papers recorded from 10 randomly selected positions within the substrate area. (a) $Zn(NO_3)_2$ coated paper. (b) ZnO-paper synthesized by the proposed two-step reaction method. (c) ZnO-paper synthesized through the sea urchin-like nano ZnO deposited on the paper directly.

Figure S2. UV-Vis absorbance spectra of different sized gold nanoparticles. a: 70 nm. b: 50 nm. c: 25 nm d: 15 nm.

Figure S3. Scanning electron microscope (SEM) images of different size gold nanoparticles. a: 70 nm. b: 50 nm. c: 25 nm d: 15 nm.

Figure S4. SERS signal of SO₂ at 620 cm⁻¹ with different concentrations of Na₂SO₃ (5, 30, 80, 120, 180, 220, 260 and 300 μ g/mL). Data were collected at 3-4 randomly chosen positions on each ZnO-paper substrate.

Figure S5. Different SERS peak intensities of SO₂ at 620 cm⁻¹ when different concentrations acetic acid were added in 300 μ g/mL Na₂SO₃ standard solutions before μ PAD-SERS analysis.

Figure S6. The effect of different storage conditions on the SERS signal of μ PAD.