Electronic Supplementary Information (ESI)

Mechanical pencil lead-supported carbon nanotube/ Au nanodendrite structure as an electrochemical sensor for As (III) detection

Pham Khac Duy,^a Jong-Ryeul Sohn^b and Hoeil Chung *a

^a Department of Chemistry and Institute for Materials Design, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea.

^b Health-Society Interaction, Health and Environmental Science, Korea University, Seoul 136-701, Republic of Korea

*Corresponding author; Tel: +82 2 2220 0937; Email: hoeil@hanyang.ac.kr (H. Chung)

Evaluation of dynamic range of the sensor

The dynamic response range of the sensor was tested by observing responses of As^{3+} samples greater than 80 ppb and up to 800 ppb as presented in Fig. S1, showing the variation of As^{3+} peak intensities according to the elevation of As^{3+} concentration. The variation was clearly linear over the 0.5 - 800 ppb range with R² of 0.994; while, the response became nonlinear afterward. Therefore, the found dynamic range was 0.5 - 800 ppb.

Figure S1. Variation of As^{3+} peak intensities according to the elevation of As^{3+} concentration from 0.5 to 800 ppb.

Selectivity test against As⁵⁺, organic As and Hg²⁺

Further, the selectivity of sensor against As⁵⁺, organic As (monomethyl arsenic acid) and Hg²⁺ was separately tested. For the evaluation, the concentrations of each interfering component were separately varied from 0.5, 10, 30, 50, 70, 90, 110 to 130 ppb in 10 ppb As³⁺ samples and the resulting samples were measured. Fig. S2 (a), (b) and (c) shows DPV voltammograms of 10 ppb As^{3+} samples with the presence of As⁵⁺, organic As and Hg²⁺, respectively. No distinct electrochemical peaks corresponding to As⁵⁺ and monomethyl arsenic acid were observed except the only As³⁺ peaks around 0.05 V. In a meanwhile, Hg²⁺ peaks were observed around 0.38 V and the peak intensity increased with the elevation of Hg^{2+} concentration; however, the Hg^{2+} peak did not overlap with the As^{3+} peak. Fig. S2 (d) show the observed intensities of As^{3+} (black square) and Hg^{2+} (red circle) peaks. As shown, the intensities of Hg²⁺ peaks linearly increased with the concentration; while, the intensities of As³⁺ peaks did not significantly change under the variation of Hg²⁺ concentrations. Relative standard deviation (RSD) of the peak intensities was only 5% approximately. Based on the observations, the presence of As⁵⁺, monomethyl arsenic acid and Hg²⁺ will not hamper the measurement of As³⁺.

Figure S2. DPV signals of 10 ppb As³⁺ samples with the presence of As⁵⁺ (a), monomethyl arsenic acid (b) and Hg²⁺ (c). The concentrations of these interfering components varied from 0.5, 10, 30, 50, 70, 90, 110 to130 ppb. The intensities of As³⁺ (black square) and Hg²⁺ peaks (red circle) are also plotted (d).