Supporting Information

Persistent Luminescence Microspheres-based Probe for Convenient Imaging Analysis of Dopamine

Jie Tang, [†] Yingying Su,[‡] Dongyan Deng, [†] Lichun Zhang, [†] Na Yang, [†] Yi Lv^{† *}

[†] Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China

[‡]Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China

*Corresponding Author. Email: lvy@scu.edu.cn; Tel. & Fax +86-28-8541-2798

Fig. S1. N₂ adsorption-desorption isotherms of the products. The inset is the pore size distributions calculated by the BJH method from the adsorption branch.

Fig. S2. Afterglow intensity and afterglow images of $SrMgSi_2O_6$:Eu_{0.01},Dy_{0.02} PL microsperes were five repeated excitation by sunlight for 3 min.

Fig. S4. Elemental mappings of $SrMgSi_2O_6$: $Eu_{0.01}$, $Dy_{0.02}$ PL microsperes.

S3

Fig. S5. UV-vis absorption of DA (black curve) and afterglow spectra of SrMgSi₂O₆:Eu_{0.01},Dy_{0.02} PL microsperes (red curve).

Fig. S6. The Zeta potential of $SrMgSi_2O_6$:Eu_{0.01},Dy_{0.02} PL microsperes, DA and phenols (catechol, hudroquinone, phloroglucinol and 4-tert-butylcatechol).

