Effective Isolation of Exosomes by Polyethylene Glycol from Cell

Culture Supernatant for In-depth Proteome Profiling

Yejing Weng ^{a,b,†}, Zhigang Sui ^{a,†}, Yichu Shan^a, Yechen Hu^{a,b}, Yuanbo Chen^{a,b}, Lihua Zhang^{*a} and Yukui Zhang^a

^a Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. ^b University of Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding Author E-mail: lihuazhang@dicp.ac.cn.

[†] These authors contributed equally to this work.

Results

Fig. S1 Concentration of particles isolated by using different polymers or macromolecules. Other conditions: PEG, 10% (g/mL) 10 kDa; chondroitin sulfate A sodium, 8% (g/mL) (saturated); alginic acid sodium, 6% (g/mL) (saturated); soluble starch, 4% (g/mL) (saturated); carboxylated chitosan, 8% (g/mL) (saturated); PVA, 10% (g/mL) 10 kDa; PEI, 10% (g/mL) 10 kDa; ultracentrifugation. All results were measured in three technical replicates and showed as mean \pm S.D..

Fig. S2 Concentration of particles isolated by PEG with different Mw. Other conditions: 10% (g/mL) PEG without any salts. All results were measured in three technical replicates and showed as mean \pm S.D..

Fig. S3 Concentration of particles isolated by PEG with different concentrations. Other conditions:

PEG (10 kDa) without any salts. All results were measured in three technical replicates and showed as mean \pm S.D..

Fig. S4 Concentration of particles isolated by using PEG with different NaCl concentrations. Other conditions: 10% (g/mL) PEG with Mw of 10 kDa. All results were measured in three technical replicates and showed as mean \pm S.D.

Fig. S5 Size distribution by NTA analysis of particles isolated from HeLa cell culture supernatant by

optimized PEG-based approach.

Fig. S6 Extracted ion chromatograms (XICs) of PEG ions (m/z 432.28, 476.30, 520.33, 564.36, 608.38, 652.41) in each fraction with mass tolerance of 10 ppm.

Table S1 Number and ratio of identified peptides, neo-N termini and original N-termini in a technical replicate.

Investigation	all peptides	neo-N termini	original N-termini ^a	ratio of neo- N termini	ratio of original	neo – N termini original N – termini
Sampies					N-termini	
Exosome isolated from HeLa cells	30670	4470	353	14.6%	1.2%	12.66
HeLa cells	13946	788	321	5.7%	2.3%	2.45
Human erythrocytes ¹	N/A ^b	883	435	N/A	N/A	2.03

^a: original N-termini: starts with intact or removed initiator-Met

^{*b*}: N-terminal peptides were enriched using terminal amino isotopic labeling of substrates (TAILS),² thus, most peptides were removed, which resulted in the missing of information of all peptides.

Reference

1. Lange, P. F.; Huesgen, P. F.; Nguyen, K.; Overall, C. M., Annotating N termini for the human proteome project: N termini and N α -acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. *J. Proteome Res.* **2014**, *13* (4), 2028-2044.

2. Kleifeld, O.; Doucet, A.; auf dem Keller, U.; Prudova, A.; Schilling, O.; Kainthan, R. K.; Starr, A. E.; Foster, L. J.; Kizhakkedathu, J. N.; Overall, C. M., Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. *Nat. Biotechnol.* **2010**, *28* (3), 281-288.