Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Fig. S1 The RLS spectra of GQDs in the presence of different concentrations of PDDA in the range from 0 to 22.5 μ g mL⁻¹ (0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20 and 22.5 μ g mL⁻¹).

Fig. S2 The effect of pH on the fluorescence spectra of GQDs. Inset: The effect of pH on the fluorescence intensity of GQDs.

Fig. S3 The fluorescence intensity of GQDs-PDDA-(NaPO₃)₆-ACP system in the presence of (a)10, (b)300 and (c)750 nU/mL ACP at different incubation time.

Fig. S4 Effect of incubation temperature on the fluorescence intensity ratio F/F_0 of GQDs-PDDA-(NaPO₃)₆-ACP system. F_0 and F are the fluorescence intensities of the PDDA–GQDs–(NaPO₃)₆ system in absence and presence of 300 nU/mL ACP.

Detection method	LOD	Linear range	Ref
Fluorometry	1 nM	1-30 nM	[1]
Fluorometry	5 μU mL ⁻¹	5-100 µU mL ⁻¹	[5]
Fluorometry	9 nU mL ⁻¹	75-1500 nU mL ⁻¹	[8]
Fluorometry	0.18 nM	0-20 nM	[24]
Fluorometry	0.17 nM	0-20 nM	[25]
Fluorometry	12 nU mL ⁻¹	30-420 nU mL ⁻¹	This work

Table S1 The comparison of different method for the detection of ACP

The ACP in [1], [24] and [25] was obtained from Sigma (USA). 1 nM, which is corresponding to 0.3-1 mU/mL.

Fig. S5 The fluorescence intensity of GQDs-PDDA-(NaPO₃)₆ system in the presence of 420 nU mL⁻¹ ACP and other 8 common proteins, including alkaline phosphatase (ALP), lysozyme, bovine hemoglobin (BHB), bovine serum albumin (BSA), horseradish peroxidase (HRP), trypsin, pepsin and thrombin.

Coexisting substances	Tolerable concentration (μ mol mL ⁻¹)	ΔF/F (%)
NaCl	10.00	1.46
KCl	10.00	1.58
MgCl ₂	10.00	2.72
$Zn(NO_3)_2$	10.00	2.06
Ca(NO ₃) ₂	10.00	3.17
Na ₃ PO ₄	10.00	3.66
Na ₂ HPO ₄	10.00	3.13
NaH ₂ PO ₄	10.00	3.26
FeCl ₃	0.10	-4.77
FeCl ₂	2.00	-2.36

Table S2 The interference of coexisting ions on the detection of ACP (300 nU mL⁻¹)

 $\Delta F/F = F_0 - F$, where F_0 and F are the fluorescence intensities of the PDDA-GQDs-(NaPO₃)₆-ACP system in

absence and presence of interfering ions.