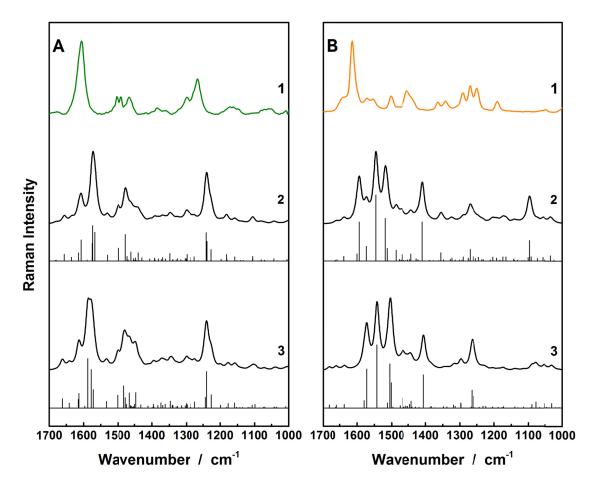
Supplementary Material

Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia

Di Yan¹, Christian Domes¹, Robert Domes¹, Timea Frosch¹, Jürgen Popp^{1,3,4}, Mathias W. Pletz², Torsten Frosch^{1,3,4,*}


¹Leibniz Institute of Photonic Technology, Jena, Germany

²University Hospital, Center for Infectious Diseases and Infection Control, Jena, Germany

³Friedrich Schiller University, Institute for Physical Chemistry, Jena, Germany

⁴Friedrich Schiller University, Abbe Centre of Photonics, Jena, Germany

^{*}corresponding author: <u>torsten.frosch@uni-jena.de</u>, <u>torsten.frosch@gmx.de</u>

Figure S1

Comparison of the experimental FT-Raman spectra ($\lambda_{exc.}$ = 1064 nm) of bilirubin (**A1**) and biliverdin (**B1**) with the calculated Raman spectra (B3LYP/cc-pVTZ) of bilirubin (in water (PCM): **A2** and in gas phase: **A3**) and biliverdin (in water (PCM): **B2** and in gas phase: **B3**). The scaling factors for A were 0.9762 and 0.9809 and for B were 0.9794 and 0.9792 for the gas phase and the PCM calculation, respectively.

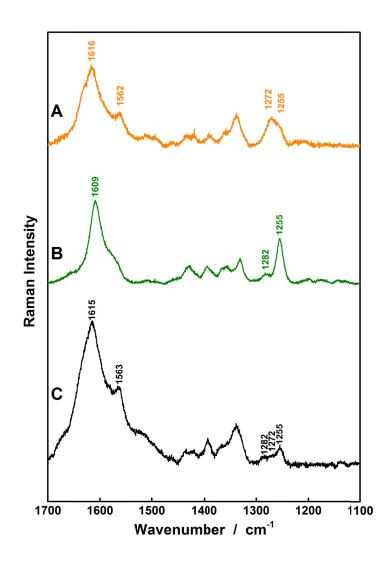


Figure S2 Raman spectra of 100 μ M bilirubin (A), 1 μ M biliverdin (B), and their mixture (C) with $\lambda_{exc.}$ = 364 nm.