Supplementary Information

for

Biotinylated Piperazine-rhodol Derivative: a 'Turn-On' Probe for Nitroreductase Triggered Hypoxia Imaging

Ying Zhou,^{‡a} Kondapa Naidu Bobba,^{b‡} Xue Wei Lv, ^a Dan Yang,^a Nithya Velusamy,^b Jun Feng Zhang,^{*c} and Sankarprasad Bhuniya^{*bd}

^a College of Chemical Science and Technology, Yunnan University, Kunming 650091, China

^bAmrita Centre for Industrial Research & Innovation, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India. E-mail: b_sankarprasad@cb.amrita.edu

^c College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China, E-mail: junfengzhang78@aliyun.com

^d Department of Chemical Engineering & Materials Science, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India

*†**Corresponding: *b_sankarprasad@cb.amrita.edu*; *junfengzhang78@aliyun.com*

‡These authors contributed equally to this work.

Table of Content

1. Reaction Scheme	Scheme S1
2. Fluorescence spectra	Fig. S1
3. Kinetic curve diagram	Fig. S2
4. LC-MS of 1 with NTR	Fig. S3
5. HRMS of 1 with NTR	Fig. S4
5. Fluorescence spectra – pH	Fig. S5
5. H-NMR & 13C-NMR Spectra	Fig. S6-S7
6. HRMS and HPLC	Fig. S8-S 9

Scheme S1 Reagents and Reaction conditions: i) 1-(3-hydroxyphenyl)-piperazine, Sealed tube, TFA, 90 °C, 3 h ii) D-Biotin, HATU, DIPEA, RT, 12 h iii) a) 4-nitrophenylchloroformate, DIPEA, 0 °C-RT, 3 h, b) 4-Nitrobenzyl alcohol, Et₃N, DMF, RT, 12 h.

Fig. S1 The changes in the fluorescence intensity of **1** (2 μ M) at 550 nm against varied concentrations of NTR from 0 to 1.5 μ g/mL in DMSO–PBS buffer (0.01 M, pH 7.4) (V/V= 1:9) with the slit width 10/10 nm. The error bars were obtained from average data of three successive experiments.

Fig. S2 Kinetic curve of **1** (20 μ M) at 550 nm with NTR (15 μ g/mL) in DMSO–PBS buffer (0.01 M, pH = 7.4) (V/V = 1:9), containing 0.1 mM NADPH as a coenzyme. The excitation wavelength (λ_{ex}) was 510 nm and the slit widths: 5 nm/5 nm.

S3. LC-MS data of the products after 1 was stirred with NTR and NADPH for 90 min in DMSO-PBS buffer (0.01 M, pH= 7.4) (V/V= 1:9).

Fig.

Fig. S4 (a) The TOF⁻ and (b) TOF ⁺ tests of the products after 1 was stirred with NTR and NADPH for 90 min in DMSO-PBS buffer (0.01 M, pH= 7.4) (V/V= 1:9).

Fig. S5 Fluorescence response of 1 (20 μ M) in the presence of NTR (15 ng/mL) and in absence of NTR in variable pH ranges (4-8). The excitation wavelength (λ_{ex}) was 510 nm and both the slit width set at 5 nm/5 nm. The error bars were obtained from average data of three successive experiments.

	Hacat	L6	Hepg2	A549	SKOV
EC50/µM	3.76	6.15	6.42	1.99	2.67

Table. S1 Cytotoxicity of 1 on different cells in presence NTR.

Fig. S6 ¹H-NMR of 1 in DMSO-d₆

Fig.S7¹³C-NMR of 1 in DMSO-d₆

Fig.S8 HRMS of 1

Fig. S9 HPLC of 1