Electronic Supplementary Material

 $CF_3{}^+$ and $CF_2H{}^+{:}$ new reagents for n-alkane determination in chemical ionisation reaction mass spectrometry

Robert S. Blake^(a), Saleh A. Ouheda^(a), Corey J. Evans^(a) and Paul S. Monks^(a,b)

- (a) Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
- (b) Corresponding author

		$^{(a)}CF_2H^+$	(a)CF3+	^(b) CF ₃ ⁺
methane	CH ₄			
ethane	C_2H_6	5.5	3.7	3.2
propane	C ₃ H ₈	8.6	5.9	5.0
n-butane	C ₄ H ₁₀	11.8	7.5	6.2
n-pentane	$C_{5}H_{12}$	13.1	8.9	8.9
n-hexane	C_6H_{14}		10.5	8.6

Table S-1. Rate Coefficients of Hydride Transfer with linear n-alkanes ($k / 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) a. Source: Lias et al. ¹⁸ b. Source: Dehon et al.²⁰

Name	<u>m/z</u>	Fragments	<u>% (CF₄)</u>	<u>%(0₂)</u>	<u>% CF₃±</u>
Ethane C ₂ H ₆	26	$C_2H_2^+$		1	80
	27	$C_2H_3^+$		2	
	28	$C_2H_4^+$		14	
	29	$C_2H_5^+$	99	83	
Propane C ₃ H ₈	26	$C_2H_2^+$		1	77
	27	$C_2H_3^+$		1	
	28	$C_2H_4^+$		28	
	29	$C_2H_5^+$	1	4	
	41	$C_{3}H_{5}^{+}$		2	
	43	C ₃ H ₇ +	99	64	
n-Butane C ₄ H ₁₀	26	$C_2H_2^+$		<1	82
	27	C ₂ H ₃ +		1	
	28	$C_2H_4^+$		3	
	29	$C_2H_5^+$	1	3	
	41	C ₃ H ₅ +		2	
	43	C ₃ H ₇ ⁺	1	73	
	57	$C_4H_9^+$	96	17	
n-Pentane C_5H_{12}	28	$C_2H_4^+$		1	60
	29	$C_2H_5^+$		3	
	41	$C_{3}H_{5}^{+}$		5	
	42	C ₃ H ₆ +		2	
	43	C ₃ H ₇ +	6	45	
	56	$C_4H_8^+$		3	
	57	$C_{4}H_{9}^{+}$	1	11	
	71	$C_5H_{11}^+$	93	30	
n-Hexane C ₆ H ₁₄	29	$C_2H_5^+$		<1	64
	41	C ₃ H ₅ +		1	
	43	$C_{3}H_{7}^{+}$	20	5	
	56	$C_4H_8^+$		28	
	57	$C_4H_9^+$	5	42	
	58	$C_4H_{10}^+$		3	
	71	$C_5H_{11}^+$	1	3	
	85	$C_6H_{13}^+$	74	17	

Table S-2. Relative abundance of observed ions at E/N=50Td. The relative abundance of $CF_2H^+/*CF_2H^+ + CF_3^+$) was higher for standards prepared in Tedlar bags. This resulted in a reduced relative yield of CF_3^+ (shown in the rightmost column).

Name	<u>m/z</u>	<u>Fragments</u>	<u>% (CF₄)</u>	<u>%(O</u> ₂)	<u>% CF₂H⁺</u>
Ethane C ₂ H ₆	26	$C_2H_2^+$		2	99.6
	27	$C_2H_3^+$	4	10	
	28	$C_2H_4^+$		30	
	29	$C_2H_5^+$	94	57	
Propane C_3H_8	26	C ₂ H ₂ +		2	99.2
	27	C ₂ H ₃ +		2	
	28	$C_2H_4^+$		36	
	29	$C_2H_5^+$	1	11	
	41	$C_{3}H_{5}^{+}$	2	4	
	43	$C_{3}H_{7}^{+}$	97	45	
n-Butane C ₄ H ₁₀	26	C ₂ H ₂ +		<1	99.6
	27	$C_2H_3^+$		1	
	28	$C_2H_4^+$		3	
	29	$C_2H_5^+$	1	8	
	41	$C_3H_5^+$		7	
	42	$C_{3}H_{6}^{+}$		2	
	43	C ₃ H ₇ +	1	74	
	57	$C_4H_9^+$	96	4	
n-Pentane C ₅ H ₁₂	27	C ₂ H ₃ +		<1	99.3
	29	C ₂ H ₅ +		2	
	41	C ₃ H ₅ +		20	
	42	C ₃ H ₆ +		8	
	43	C ₃ H ₇ +	25	52	
	56	$C_4H_8^+$		4	
	57	$C_{4}H_{9}^{+}$		11	
	58	$C_4H_{10}^+$		<1	
	71	$C_5H_{11}^+$	75	3	
n-Hexane C ₆ H ₁₄	29	$C_2H_5^+$		1	99.3
	41	$C_{3}H_{5}^{+}$	2	7	
	42	C ₃ H ₆ ⁺		1	
	43	C ₃ H ₇ +	48	8	
	56	$C_{4}H_{8}^{+}$		31	
	57	$C_{4}H_{9}^{+}$	6	47	
	58	$C_4 H_{10}^+$		2	
	71	$C_5H_{11}^+$	<1	2	
	85	$C_6H_{13}^+$	44	1	

Table S-3. Relative abundance of observed ions at E/N=100Td. The relative abundance of $CF_2H^+/(CF_2H^+ + CF_3^+)$ was higher for analytes prepared in Tedlar bags. This resulted in a reduced relative yield of CF_3^+ (shown in the rightmost column).

		100Td		50Td	
Name	Fragment	S:N	LOD (ppm)	S:N	LOD (ppm)
Ethane	$C_2H_5^+$	2678	0.006	4755	0.003
Propane	$C_{3}H_{7}^{+}$	1046	0.014	1277	0.011
n-Butane	$C_4H_9^+$	24002	0.001	52560	0.001
n-Pentane	$C_5H_{11}^{+}$	2253	0.030	2678	0.030
n-Hexane	$C_6H_{13}^+$	1267	0.017	2249	0.003

Table S-4. Limits of detection (LOD) for the alkane/ CF_3^+ reactions for a run of 10 minutes. Operating at 50Td was degraded by increased background noise. Both the Signal to Noise (S:N) and the Limits of Detection (LOD) are calculated in accordance with the IUPAC recommendations ³⁰.

		100Td		50Td	
Name	Fragment	S:N LOD (ppm)		S:N	LOD (ppm)
Ethane	$C_2H_5^+$	4475	0.003	8182	0.002
Propane	$C_{3}H_{7}^{+}$	4590	0.003	22145	0.001
n-Butane	$C_4H_9^+$	1172	0.013	18076	0.001
n-Pentane	$C_5H_{11}^+$	2363	0.006	10665	0.029
n-Hexane	$C_6H_{13}^+$	1942	0.008	5161	0.003

Table S-5. Limits of detection (LOD) for the alkane/ O_2^+ reactions for a run of 10 minutes. Both the Signal to Noise (S:N) and the Limits of Detection (LOD) are calculated in accordance with the IUPAC recommendations.³⁰

1.	$CF_3^+ + H_2O \rightarrow CF_2H^+ + HOF$	ΔH=+361.7 kJ mol ⁻¹
2.	$\mathrm{CF}_3{}^* + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CF}_2\mathrm{OH}{}^* + \mathrm{HF}$	ΔH=-142.8 kJ mol ⁻¹
3.	$CF_2^+ + H_2O \rightarrow CF_2H^+ + OH$	ΔH=-13.2 kJ mol ⁻¹
4.	$\mathrm{CF_2^{2+}+H_2O} \rightarrow \mathrm{CF_2OH^++H^+}$	ΔH= -1725.5 kJ mol ⁻¹
5.	$CF_2^+ + CF_4 \rightarrow CF_3^+ + CF_3$	$\Delta H = -92.185 \text{ kJ/mol}^{-1}$

Table S-6. Thermochemistry Calculations.

MP2/6-311G^{**} calculations, ZPE was taken in to account. At E/N = 100Td, the centre of mass energy due to the electric field in the drift tube was 9.04 kJ mol⁻¹ to which should be added the thermal energy of 4.19 kJ mol⁻¹ for a total of 13.32 kJ mol⁻¹. A small presence of CF₂OH⁺ at m/z=67 was noted in all the spectra. The value of Δ H obtained for reaction 2 above is in reasonable agreement the value of Δ H = -164.5 kJ mol⁻¹ reported by Grandinetti et al.³¹

n-Alkane	Mass	Percentage yield				Rel. CF ₃ ⁺ yield
	(amu)		wet/dry %			
		RH=0.1%	RH=20%	RH=45%	RH=90%	
Ethane	29	100	-	-	40	82/94
Propane	43	100	76	57	45.4	75/90
n-Butane	57	100	82	66	44.9	80/93
n-Pentane	71	100	82	65	44.9	73/82
	43	100	78	60	41.4	
n-Hexane	85	100	72	52	34.6	73/82
	57	100	77	58	44.4	
	43	100	78	58	41.2	

Table S-7. The effect of ambient moisture ranging from 0.1% to 90% RH on the yield of the principal fragments of the n-alkane reactions with CF_{3^+} and $CF_{2}H^+$. Inspite of the low relative humidity of the analytes, persistent residual moisture in the system had a significant effect on the results. The resolution of the equipment was not sufficient to distinguish between $C_2H_5^+$ and an unidentified group possibly N_2H^+ or COH⁺. The variation in the yield of the ion fragments are very similar. The value of E/N was ca. 100 Td, a region where the reactants' yield was most sensitive to small shifts in the value of E/N.